Skip to main content
Article thumbnail
Location of Repository

Effect of overlying windrowed harvest residues on soil carbon and nitrogen in hoop pine plantations of subtropical Australia

By Tim J. Blumfield, Zhihong Xu, Nina Prasolova and Nicole J. Mathers

Abstract

Background, Aims and Scope. Harvest residues were formed into windrows to prevent nitrogen (N) losses through volatilisation and erosion that occurred following pile and burn operations in hoop pine (Araucaria cunninghamii Aiton ex A. Cunn.) plantations of subtropical Australia. We selected second rotation (2R) hoop pine sites where the windrows (10-15 m apart) had been formed 1, 2 and 3 years prior to sampling in order to examine soil carbon (C) and N in the areas beneath and between the windrows. Methods. We used conventional chemical methods, anaerobic incubation assay, C-13 and N-15 natural abundance analyses and, solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy. Results. Percent mineralisable N (PCMN) was the only parameter in the underneath windrow position at the Year 1 site that did not show a significant difference to the rest of the positions along the transect. However, positions adjacent to windrows did have significantly greater PCMN at the Year 1 site than other positions along the transect. PCMN, total N and total C were significantly greater underneath the windrows at the Year 3 site, whilst delta C-13 was significantly more negative in the underneath windrow positions. Discussion. PCMN was the most sensitive biological indicator of the changes occurring in the soil due to decomposition of the windrows, with the beneath-windrow position having a significantly higher PCMN than the inter-windrow position (p < 0.001) at the Year 3 site. isotopic natural abundance for both C-13 and N-15 was able to detect the influx of labile materials from new residues. Solid-state C-13 NMR was able to detect inputs of labile C from the windrows at the Year I site, whilst the increase in aromatic C at the Year 3 site was indicative of the more advanced stages of windrow decomposition. Conclusions. Decomposition of windrowed residues had a beneficial effect on soil N and C pools. However, the effect remained localised after 3 years, indicating that trees needed to be planted close to the windrows to gain any benefit from residue decomposition. Recommendations and Perspectives. The use of windrows allows a clear planting area and provides a good barrier against soil erosion. However, trees can only gain access to the nutrients from the decomposing residues if they are planted close to the windrows. Limiting the width of the cleared areas to allow for only 2 planting rows will give the maximum benefit to the developing trees

Topics: 070504 Forestry Management and Environment
Publisher: Springer
Year: 2006
DOI identifier: 10.1065/jss2006.08.180
OAI identifier: oai:eprints.qut.edu.au:20622
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://eprints.qut.edu.au/206... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.