Caffe: Convolutional architecture for fast feature embedding

Abstract

Caffe provides multimedia scientists and practitioners with a clean and modifiable framework for state-of-the-art deep learning algorithms and a collection of reference models. The framework is a BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-purpose convolutional neural networks and other deep mod-els efficiently on commodity architectures. Caffe fits indus-try and internet-scale media needs by CUDA GPU computa-tion, processing over 40 million images a day on a single K40 or Titan GPU ( ≈ 2.5 ms per image). By separating model representation from actual implementation, Caffe allows ex-perimentation and seamless switching among platforms for ease of development and deployment from prototyping ma-chines to cloud environments. Caffe is maintained and developed by the Berkeley Vi-sion and Learning Center (BVLC) with the help of an ac-tive community of contributors on GitHub. It powers on-going research projects, large-scale industrial applications, and startup prototypes in vision, speech, and multimedia

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 01/11/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.