Structure of monoubiquitinated PCNA and implications for translesion synthesis and DNA polymerase exchange

Abstract

DNA synthesis by classical polymerases can be blocked by many lesions. These blocks are overcome by translesion synthesis, whereby the stalled classical, replicative polymerase is replaced by a non-classical polymerase. In eukaryotes, this polymerase exchange requires PCNA monoubiquitination. To better understand the polymerase exchange, we have developed a novel means of producing monoubiquitinated PCNA, by splitting the protein into two self-assembling polypeptides. We determined the X-ray crystal structure of monoubiquitinated PCNA and found that the ubiquitin moieties are located on the back face of PCNA and interact with it via their canonical hydrophobic surface. Moreover, the attachment of ubiquitin does not change PCNA’s conformation. We propose that PCNA ubiquitination facilitates non-classical polymerase recruitment to the back of PCNA by forming a new binding surface for non-classical polymerases, consistent with a “tool belt ” model of the polymerase exchange. DNA damage, caused by radiation and a variety of chemical agents, can lead to mutations, genomic instability, cancer, and cell death. Genetic studies in the yeast Saccharomyces cerevisiae have revealed three general pathways for coping with radiation-induced DNA damage in eukaryotes 1. Proteins in the Rad3 pathway catalyze nucleotide excision repair

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 30/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.