Simplifying biochemical models with intermediate species

Abstract

Mathematical models are increasingly being used to understand complex biochemical sys-tems, to analyze experimental data and make predictions about unobserved quantities. However, we rarely know how robust our conclusions are with respect to the choice and uncertainties of the model. Using algebraic techniques we study systematically the effects of intermediate, or transient, species in biochemical systems and provide a simple, yet rigorous mathematical clas-sification of all models obtained from a core model by including intermediates. Main examples include enzymatic and post-translational modification systems, where intermediates often are considered insignificant and neglected in a model, or they are not included because we are un-aware of their existence. All possible models obtained from the core model are classified into a finite number of classes. Each class is defined by a mathematically simple canonical model that characterizes crucial dynamical properties, such as mono- and multistationarity and sta-bility of steady states, of all models in the class. We show that if the core model does not have conservation laws, then the introduction of intermediates does not change the steady-state con-centrations of the species in the core model, after suitable matching of parameters. Importantly, our results provide guidelines to the modeler in choosing between models and in distinguishing their properties. Further, our work provides a formal way of comparing models that share a common skeleton

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 30/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.