This review aims to introduce the x-ray emission spectroscopy (XES) and resonant inelastic x-ray scattering (RIXS) techniques to the materials scientist working with magnetic semiconductors (e.g. semiconductors doped with 3d transition metals) for applications in the field of spin-electronics. We focus our attention on the hard part of the x-ray spectrum (above 3 keV) in order to demonstrate a powerful element- and orbital-selective characterization tool in the study of bulk electronic structure. XES and RIXS are photon-in/photon-out second order optical processes described by the Kramers-Heisenberg formula. Nowadays, the availability of third generation synchrotron radiation sources permits applying such techniques also to dilute materials, opening the way for a detailed atomic characterization of impurity-driven materials. We present the Kβ XES as a tool to study the occupied valence states (directly, via valence-to-core transitions) and to probe the local spin angular momentum (indirectly, via intra-atomic exchange interaction). The spin sensitivity is employed, in turn, to study the spin-polarised unoccupied states. Finally, the combination of RIXS with magnetic circular dichroism (RIXS-MCD) extends the possibilities of standard magnetic characterization tools
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.