Necessary and sufficient conditions for unit graphs to be Hamiltonian

Abstract

The unit graph corresponding to an associative ring R is the graph obtained by setting all the elements of R to be the vertices and defining distinct vertices x and y to be adjacent if and only if x + y is a unit of R. By a constructive method, we derive necessary and sufficient conditions for unit graphs to be Hamiltonian

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 30/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.