The Monte Carlo dynamics of a binary Lennard-Jones glassforming mixture

Abstract

We use a standard Monte Carlo algorithm to study the slow dynamics of a binary Lennard-Jones glass-forming mixture at low temperature. We find that the Monte Carlo approach is by far the most efficient way to simulate a stochastic dynamics since the relaxation is about 10 times faster than in Brownian dynamics and about 30 times faster than in stochastic dynamics. Moreover, the average dynamical behaviour of the system is in quantitative agreement with that obtained using Newtonian dynamics, apart from at very short times where thermal vibrations are suppressed. We show, however, that dynamic fluctuations quantified by four-point dynamic susceptibilities do retain a dependence on the microscopic dynamics, as recently predicted theoretically. 1

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 30/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.