Summary. This is the first paper in a series concerned with the precise characterization of the elastic fields due to inclusions embedded in a finite elastic medium. A novel solution procedure has been developed to systematically solve a type of Fredholm integral equations based on symmetry, self-similarity, and invariant group arguments. In this paper, we consider a two-dimensional (2D) circular inclusion within a finite, circular representative volume element (RVE). The RVE is considered isotropic, linear elastic and is subjected to a displacement (Dirichlet) boundary condition. Starting from the 2D plane strain Navier equation and by using our new solution technique, we obtain the exact disturbance displacement and strain fields due to a prescribed constant eigenstrain field within the inclusion. The solution is characterized by the so-called Dirichlet-Eshelby tensor, which is provided in closed form for both the exterior and interior region of the inclusion. Some immediate applications of the Dirichlet-Eshelby tensor are discussed briefly.
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.