Offline Evaluation of Response Prediction in Online Advertising Auctions

Abstract

Click-through rates and conversion rates are two core ma-chine learning problems in online advertising. The evalua-tion of such systems is often based on traditional supervised learning metrics that ignore how the predictions are used. These predictions are in fact part of bidding systems in on-line advertising auctions. We present here an empirical eval-uation of a metric that is specifically tailored for auctions in online advertising and show that it correlates better than standard metrics with A/B test results

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 29/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.