Closed-loop adaptation for robust tracking

Abstract

Abstract. Model updating is a critical problem in tracking. Inaccurate extraction of the foreground and background information in model adap-tation would cause the model to drift and degrade the tracking perfor-mance. The most direct but yet difficult solution to the drift problem is to obtain accurate boundaries of the target. We approach such a solution by proposing a novel closed-loop model adaptation framework based on the combination of matting and tracking. In our framework, the scribbles for matting are all automatically generated, which makes matting appli-cable in a tracking system. Meanwhile, accurate boundaries of the target can be obtained from matting results even when the target has large deformation. An effective model is further constructed and successfully updated based on such accurate boundaries. Extensive experiments show that our closed-loop adaptation scheme largely avoids model drift and significantly outperforms other discriminative tracking models as well as video matting approaches.

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 29/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.