SEMILINEAR WAVE EQUATIONS ON ASYMPTOTICALLY DE SITTER, KERR-DE SITTER AND MINKOWSKI SPACETIMES

Abstract

Abstract. In this paper we show the small data solvability of suitable semi-linear wave and Klein-Gordon equations on geometric classes of spaces, which include so-called asymptotically de Sitter and Kerr-de Sitter spaces, as well as asymptotically Minkowski spaces. These spaces allow general infinities, called conformal infinity in the asymptotically de Sitter setting; the Minkowski type setting is that of non-trapping Lorentzian scattering metrics introduced by Baskin, Vasy and Wunsch. Our results are obtained by showing the global Fredholm property, and indeed invertibility, of the underlying linear operator on suitable L2-based function spaces, which also possess appropriate algebra or more complicated multiplicative properties. The linear framework is based on the b-analysis, in the sense of Melrose, introduced in this context by Vasy to describe the asymptotic behavior of solutions of linear equations. An inter-esting feature of the analysis is that resonances, namely poles of the inverse of the Mellin transformed b-normal operator, which are ‘quantum ’ (not purely symbolic) objects, play an important role. 1

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 29/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.