Recognizing outer 1-planar graphs in linear time

Abstract

Abstract. A graph is outer 1-planar (o1p) if it can be drawn in the plane such that all vertices are on the outer face and each edge is crossed at most once. o1p graphs generalize outerplanar graphs, which can be recognized in linear time and specialize 1-planar graphs, whose recogni-tion is NP-hard. Our main result is a linear-time algorithm that first tests whether a graph G is o1p, and then computes an embedding. Moreover, the algo-rithm can augment G to a maximal o1p graph. If G is not o1p, then it includes one of six minors (see Fig. 3), which are also detected by the recognition algorithm. Hence, the algorithm returns a positive or negative witness for o1p.

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 29/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.