Preference-based CBR: A search-based problem solving framework

Abstract

Abstract. Preference-based CBR is conceived as a case-based reasoning methodology in which problem solving experience is mainly represented in the form of contextualized preferences, namely preferences for can-didate solutions in the context of a target problem to be solved. This paper is a continuation of recent work on a formalization of preference-based CBR that was focused on an essential part of the methodology: a method to predict a most plausible candidate solution given a set of preferences on other solutions, deemed relevant for the problem at hand. Here, we go one step further by embedding this method in a more general search-based problem solving framework. In this framework, case-based problem solving is formalized as a search process, in which a solution space is traversed through the application of adaptation operators, and the choice of these operators is guided by case-based preferences. The effectiveness of this approach is illustrated in two case studies, one from the field of bioinformatics and the other one related to the computer cooking domain.

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 29/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.