Interesting patterns often occur at varied lev-els of support. The classic association mining based on a uniform minimum support, such as Apriori, either misses interesting patterns of low support or suers from the bottleneck of itemset generation. A better solution is to exploit support constraints, which specify what minimum support is required for what itemsets, so that only necessary itemsets are generated. In this paper, we present a frame-work of frequent itemset mining in the pres-ence of support constraints. Our approach is to \push " support constraints into the Apriori itemset generation so that the \best " mini-mum support is used for each itemset at run time to preserve the essence of Apriori.
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.