A fast moving horizon estimation algorithm based on nonlinear programming sensitivity

Abstract

Moving Horizon Estimation (MHE) is an efficient optimization-based strategy for state estima-tion. Despite the attractiveness of this method, its application in industrial settings has been rather limited. This has been mainly due to the difficulty to solve, in real-time, the associated dynamic optimization problems. In this work, a fast MHE algorithm able to overcome this bottleneck is pro-posed. The strategy exploits recent advances in nonlinear programming algorithms and sensitivity concepts. A detailed analysis of the optimality conditions of MHE problems is presented. As a result, strategies for fast covariance information extraction from general nonlinear programming algorithms are derived. It is shown that highly accurate state estimates can be obtained in large-scale MHE applications with negligible on-line computational costs

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 28/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.