DNA ejection from bacteriophage T5: analysis of the kinetics and energetics

Abstract

ABSTRACT DNA ejection from bacteriophage T5 can be passively driven in vitro by the interaction with its specific host receptor. Light scattering was used to determine the physical parameters associated with this process. By studying the ejection kinetics at different temperatures, we demonstrate that an activation energy of the order of 70 kBT must be overcome to allow the complete DNA ejection. A complex shape of the kinetics was found whatever the temperature. This shape may be actually understood using a phenomenological model based on a multistep process. Passing from one stage to another requires the mentioned thermal activation of pressurized DNA inside the capsids. Both effects contribute to shorten or to lengthen the pause time between the different stages explaining why the T5 DNA ejection is so slow compared to other types of phage

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 28/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.