Min-energy voltage allocation for treestructured tasks

Abstract

Abstract. We study job scheduling on processors capable of running at variable voltage/speed to minimize energy consumption. Each job in a problem instance is specified by its arrival time and deadline, together with required number of CPU cycles. It is known that the minimum energy schedule for n jobs can be computed in O(n3) time, assuming a convex energy function. We investigate more efficient algorithms for computing the optimal schedule when the job sets have certain special structures. When the time intervals are structured as trees, the minimum energy schedule is shown to have a succinct characterization and is com-putable in time O(P) where P is the tree’s total path length. We also study an on-line average-rate heuristics AVR and prove that its energy consumption achieves a small constant competitive ratio for nested job sets and for job sets with limited overlap. Some simulation results are also given.

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 28/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.