Abstract. Recently, random linear network coding has been widely applied in peer-to-peer network applications. Instead of sharing the raw data with each other, peers in the network produce and send encoded data to each other. As a result, the communication protocols have been greatly simplified, and the appli-cations experience higher end-to-end throughput and better robustness to net-work churns. Since it is difficult to verify the integrity of the encoded data, such systems can suffer from the famous pollution attack, in which a malicious node can send bad encoded blocks that consist of bogus data. Consequently, the bogus data will be propagated into the whole network at an exponential rate. Homomorphic hash functions (HHFs) have been designed to defend systems from such pollution attacks, but with a new challenge: HHFs require that network coding must be performed in GF(q), where q is a very large prime number. This greatly increases the computational cost of network coding, in ad-dition to the already computational expensive HHFs. This paper exploits the po-tential of the huge computing power of Graphic Processing Units (GPUs) to reduce the computational cost of network coding and homomorphic hashing. With our network coding and HHF implementation on GPU, we observed significant computational speedup in comparison with the best CPU implemen-tation. This implementation can lead to a practical solution for defending the pollution attacks in distributed systems
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.