Liftoff characteristics of turbulent jet diffusion flames

Abstract

A theoretical analysis of turbulent jet diffusion flames is developed in which the flame is regarded as an en-semble of laminar diffusion flamelets that are highly distorted. The flow inhomogeneities are considered to be sufficiently strong to produce local quenching events for flamelets as a consequence of excessive flame stretch. The condition for flamelet extinction is derived in terms of the instantaneous scalar dissipation rate, which is ascribed a log-normal distribution. Percolation theory for a random network of stoichiometric sheets is used to predict quenching thresholds that define liftoff heights. Predictions are shown to be in reasonably satisfactory agreement with experimentally measured liftoff heights of methane jet diffusion flames, within experimental uncertainties. I

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 28/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.