Abstract—This study introduces a new method for minimally invasive treatment of cancer—the ablation of undesirable tissue through the use of irreversible electroporation. Electroporation is the permeabilization of the cell membrane due to an applied elec-tric field. As a function of the field amplitude and duration, the permeabilization can be reversible or irreversible. Over the last decade, reversible electroporation has been intensively pursued as a very promising technique for the treatment of cancer. It is used in combination with cytotoxic drugs, such as bleomycin, in a technique known as electrochemotherapy. However, irreversible electroporation was completely ignored in cancer therapy. We show through mathematical analysis that irreversible electropo-ration can ablate substantial volumes of tissue, comparable to those achieved with other ablation techniques, without causing any detrimental thermal effects and without the need of adjuvant drugs. This study suggests that irreversible electroporation may become an important and innovative tool in the armamentarium of surgeons treating cancer. Keywords—Electropermeabilization, Cancer therapy, Bioheat equation
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.