IADE: a system for intelligent automatic design of bioisosteric analogs

Abstract

Abstract IADE, a software system supporting molecular modellers through the automatic design of non-classical bio-isosteric analogs, scaffold hopping and fragment growing, is presented. The program combines sophisticated cheminfor-matics functionalities for constructing novel analogs and fil-tering them based on their drug-likeness and synthetic accessibility using automatic structure-based design capabil-ities: the best candidates are selected according to their simi-larity to the template ligand and to their interactions with the protein binding site. IADE works in an iterative manner, improving the fitness of designed molecules in every gener-ation until structures with optimal properties are identified. The program frees molecular modellers from routine, repeti-tive tasks, allowing them to focus on analysis and evaluation of the automatically designed analogs, considerably enhanc-ing their work efficiency as well as the area of chemical space that can be covered. The performance of IADE is illustrated through a case study of the design of a nonclassical bioisos-teric analog of a farnesyltransferase inhibitor—an analog that has won a recent ‘‘Design a Molecule’ ’ competition

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 28/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.