Indonesian Journal of Biotechnology
Not a member yet
    354 research outputs found

    The diversity of fungal associates of Dendrobium ovatum (L.) Kraenzl., an endemic orchid of the Western Ghats of India

    Get PDF
    Dendrobium ovatum is a tropical epiphytic orchid endemic to the Western Ghats of India and has been listed as a threatened species in recent research due to its declining populations and changes in flowering and fruit set patterns. This study aims to investigate the mycoflora associated with the roots, stems and leaves of D. ovatum. Both surface‐associated and endophytic fungal associates were isolated and identified using morphological and molecular methods. The study resulted in the isolation of 139 cultures, which were divided into 24 morphotypes, 99% of which belonged to Ascomycota. The most dominant members, Trichoderma harzianum and Colletotrichum gloeosporioides, were consistently observed across all the study sites. Tissue‐specific fungal diversity analysis revealed that each organ was dominated by a distinct fungal group, forming characteristic communities specific to each tissue. The roots of D. ovatum exhibited the highest species richness and diversity, compared to the stem and leaves. This research also represents the first documentation of fungal associates of the threatened orchid D. ovatum

    Metagenomic analysis of bacterial diversity in pigeon pea after soaking in water

    Get PDF
    This study investigated the diversity of bacterial community in the samples of pigeon pea (Cajanus cajan L. Millsp.) soaked in water for 12 h and 24 h. The detection of certain bacterial species in the samples that can be isolated and potentially be used as starter cultures in the development of pigeon pea‐based functional foods is the importance of this study. For bacterial identification, the V1–V9 regions on the 16S ribosomal RNA gene were amplified using 27F and 1492R primers under specific polymerase chain reaction conditions. Genomic DNA (130 ng) was sequenced on the R9.4 flow cell by Oxford Nanopore Technologies using a GridION sequencer. Library preparations were conducted using a Native Barcoding Kit 24 V14 (SQK‐NBD114.24). Primary data were acquired using MinKNOW version 22.05.7. A total of 13 bacterial families and 89 genera were identified in the pigeon pea sample soaked for 12 h, and 26 families and 90 genera were identified in the pigeon pea soaked for 24 h. The values of five diversity indices showed that the sample soaked in water for 24 h had richer bacterial abundance and diversity than for 12 h. Shannon and Simpson values revealed the higher bacterial diversity in the samples collected at 24 h than in those collected at 12 h. Species observation and abundance‐based coverage estimators (ACE) values demonstrated that the samples collected at 24 h harbored higher bac‐ terial richness than those collected at 12 h. Bacterial communities during soaking of the pigeon pea were dominated by the family Enterobacteriaceae and genus Enterobacter. The presence of bacterial genera like Lacticaseibacillus, Lentilactobacillus, and Secundilactobacillus is interesting because of their importance as starter cultures for fermented plant‐based milk product

    Specific PCR primers for rapid detection of five rat and mouse species in Java, Indonesia

    Get PDF
    Identifying rat and mouse species quickly, affordably, and accurately is crucial for effective population management, as well as for eradication or conservation purposes. However, the sheer diversity of these species poses a challenge. To address this, a molecular approach has been developed, involving the amplification of a short genetic marker from materials commonly left by the animal, such as hairs and feces. Recent available PCR primers were not suitable for the surveillance of large sample sizes. As a solution, this study designed and validated a PCR primer set capable of detecting five species of rats and mice (Mus musculus, Rattus tanezumi, Bandicota indica, Rattus tiomanicus, and Rattus argentiventer) commonly found in Java, Indonesia. The specific primers were derived from the cytochrome c oxidase subunit 1 (COI) gene, designed using the SP‐Designer V7.0 application, and validated using both in silico and in vitro methods. The validation results demonstrated that all five pairs of primers were highly specific, generated correct amplicons, and successfully detected the five distinct species present in a Javan mongoose feces sample. These findings are significantly important as they enable the effective detection of rat and mouse species and potentially provide valuable ecological insights from the field

    Improving transient gene expression and agroinfiltration‐based transformation effectiveness in Indonesian orchid Phalaenopsis amabilis (L.) Blume

    Get PDF
    Transient gene expression is an approach used to study transient genes across various species, with infiltration by Agrobacterium tumefaciens (agroinfiltration) being a commonly used method. Agroinfiltration offers a simple and effective means of delivering transgenes into the plant genome. An alternative method for enhancing the quality and productivity of orchids as ornamental plants is genetic modification through agroinfiltration. Although Agrobacterium‐mediated genetic transformation by immersion has been used on the Phalaenopsis amabilis (L.) Blume species of orchid, transformation efficiency using the immersion technique remains relatively low and the method itself is challenging due to its requirement for aseptic handling. The application of agroinfiltration in P. amabilis has not previously been reported. This study investigates the impact of the injection site, acetosyringone concentration, bacterial density (OD600), and injection volume to determine the optimum conditions for agroinfiltration on P. amabilis. The results demonstrated that injection site had a noticeably distinct impact on transformation effectiveness, with the abaxial position of the leaf being the optimal site for Agrobacterium culture suspension injection. While adjustments in acetosyringone concentration, bacterial density (OD600), and injection volume did not significantly affect transformation efficiency, they did influence the peak time of GFP fluorescence. Acetosyringone at a concentration of 200 µM, an OD600 of 1.0 for Agrobacterium culture, and an injection volume of 500 µL effectively accelerated GFP expression duration

    Performance of salt‐bridge microbial fuel cell (SB‐MFC) with various microorganism cultures on the generation of electricity from tofu wastewater

    Get PDF
    A suitable wastewater treatment system is required due to the high organic compound content in tofu wastewater, which can harm the environment. Biological treatment methods are effective for treating tofu wastewater due to its characteristics. Microbial fuel cells (MFCs) represent one such biological treatment option, effectively removing organic contaminants while generating low‐power electricity through bioenergetic reactions. In MFCs, microorganisms are used as biocatalysts to degrade the organic compounds present in wastewater. This study aimed to assess the efficacy of Salt‐bridge microbial fuel cells (SB‐MFC) using various acclimatized microbe cultures for reducing organic compounds and generating energy from tofu wastewater. Tofu wastewater was sterilized prior to introduction into the reactor. Additional microbes, including the native microbe consortium from tofu wastewater, Escherichia coli, Saccharomycopsis fibuligera, and a mixed culture of E. coli and S. fibuligera, were then introduced as biocatalysts. Carbon electrodes were utilized as both the anode and cathode. The results indicate that the mixed culture of E. coli and S. fibuligera significantly reduced COD and BOD5 levels, with removal rates of 82.74% and 76.53%, respectively, after 48 h. Furthermore, the culture generated a voltage of 676 mV, a current of 2.53 mA, a power density of 428 mWatt/m2, and 4.789×10‐2 kWh of energy. This study contributes to the advancement of SB‐MFC by utilizing wastewater and a combination of bacteria and yeast as biocatalysts

    Detection and quantification of pork and rat DNA in processed meats using multiplex quantitative Real‐Time PCR (m‐qPCR)

    Get PDF
    In addition to the issue of pork contamination, processed meats frequently contain traces of rat meat. Therefore, detection and quantification of the pork and rat DNA in cases of meat and processed meat adulteration are necessary. In the current study, two gene targets of the cytochrome b for pigs and the Mt‐atp6 of Rattus norvegicus for rats were used in the absolute multiplex quantitative real‐time PCR (m‐qPCR). The sample DNA was amplified with a standard as positive control in the various concentration of 1000 pg, 100 pg, 10 pg, 0.1 pg, 0.01 pg, and 0.001 pg. There were 25 processed meat samples and 5 fresh meat samples identified in this study. Among the total of 30 samples assessed, 6 samples were successfully detected and quantified their pork and rat DNA contamination. One sample was contaminated with pork DNA with a concentration of 2.451×10‐4 pg (“Meatball 3). Five samples were contaminated with rat DNA with a concentration of 3.603×10‐11 pg (“Sempol 3”), 2.196×10‐10pg (“Meatball 6”), 4.908×10‐11 pg (“Siomay 3”), 1.489×10‐10 pg (“Grinding 2”), and 3.564×10‐10 pg (“Grinding 4”). In this study, we have discovered that the contamination of pork and rat were detected in the samples. It suggested that this method is applicable for detecting the contaminant in processed meat sample

    A comprehensive study of potential Arthrospira platensis cultivated in various manure‐based media for biodiesel feedstock

    Get PDF
    Arthrospira platensis has emerged as a promising biodiesel feedstock due to its rapid growth and substantial biomass. In efforts to reduce production costs, researchers have explored alternative media derived from livestock waste to modify conventional mediums for Arthrospira platensis cultivation. The experimental design of this research employed a Completely Randomized Design, with treatments comprising inorganic fertilizer (A), chicken manure (B), cow manure (C), and goat manure (D). The livestock manures were macerated for seven days before being utilized as A. platensis medium. The results revealed significant (p < 0.05) impacts of different media on peak growth values and biomass production, reaching 2.03 ± 0.06 g/L and 1.76 ± 0.05 g/ L, respectively for chicken manure. The highest peak lipid content was observed in A. platensis cultured in goat manure medium. This study recommends goat manure as the preferred medium for mass cultivation of A. platensis. Mass cultivation in goat manure medium yielded 1.53 kg of dried biomass, with a lipid content of 1.91% and a biodiesel yield of 1.65%. The predominant fatty acid in this biodiesel was heneicosane, constituting 26.4% of the total area

    Moringa oleifera leaf extract ameliorates collagen degradation via the inhibition of MMP‐3 expression in UVB‐induced rats

    Get PDF
    Prolonged exposure to high‐intensity UVB induces the formation of reactive oxygen species (ROS) in skin tissue, triggering an increase in matrix metalloproteinase‐3 (MMP‐3) enzyme production and leading to collagen degradation. Moringa oleifera (MO) contains bioactive compounds known for ROS‐scavenging and anti‐inflammatory properties. However, the precise molecular mechanism of action remains unclear, requiring the inhibition of MMP‐3 activation and regulation of collagen deposition. This study aims to elucidate the potential effect of MO leaf extract‐based gel in restoring collagen deposition by reducing MMP‐3 activation in UVB irradiate‐induced collagen loss in rats. This study employed a completely randomized design, comprising four groups: a healthy group without UVB radiation, a negative control group subjected to UVB radiation and receiving a placebo, and two treatment groups exposed to UVB radiation with 5% or 10% moringa leaf extract‐based gel (MO‐5% or MO‐10%), respectively. Results showed that MO‐5% and MO‐10% significantly reduced MMP‐3 gene expression and increased collagen density compared to the negative control group (p < 0.05). Moringa oleifera leaf extract ameliorates collagen degradation by inhibiting MMP‐3 expression in UVB‐induced rats, suggesting its potential as a pharmacological and cosmetic agent for UVB‐induced skin damage

    Genes expression analysis of EgUnk1, EgZFP2, and EgIPK2b in oil palm using Ct value correction and two relative quantification approaches

    Get PDF
    The determination of transcript accumulation values significantly affects gene expression in oil palm. Various genes are involved in pathogen infection, including probable 2‐oxoglutarate‐dependent dioxygenase At5g05600 (EgUnk3), zinc finger protein 2‐like (EgZFP2), and inositol polyphosphate multikinase beta‐like (EgIPK2b). Gene expression is typically measured using relative quantitative methods to calculate differences in quantitative values in the expression levels of targeted genes compared to a reference gene. However, the effectiveness of these methods in assessing the expression of EgUnk3, EgZFP2, and EgIPK2b, which are involved in Ganoderma boninense infection in oil palm seedlings, requires evaluation. This study aimed to establish an effective and straightforward method for analyzing the expression of EgUnk1, EgZFP2, and EgIPK2b genes in oil palm seedlings infected with G. boninense, utilizing Ct value correction through regression coefficients on the 2‐ΔΔCt and E‐ΔΔCt approaches. A correlation regression revealed values of 0.28, ‐0.32, and 0.29 for delta Ct of EgUnk1, EgZFP2, and EgIPK2b, respectively. However, a negative correlation in the Ct mean was corrected by linear regression for the targeted genes: ‐0.55, ‐0.81, and ‐0.29 for EgUnk1, EgZFP2, and EgIPK2b, respectively. The amplification factor (E) and efficiency value (R) using the EgActin gene were 1.95 and 94.92%, respectively. Normalization of log10 on the fold change value 2‐ΔΔCt and 1.95‐ΔΔCt approaches using the regression coefficient yielded consistent results for the EgUnk1, EgZFP2, and EgIPK2b genes. Overall, EgUnk3 and EgIPK2b genes exhibited downregulated expression in susceptible oil palm seedlings (‐0.60 for 2(‐ΔΔCt) and ‐0.58 for 1.95(‐ΔΔCt)), whereas EgIPK2b gene showed up‐regulated and the highest value in inoculated resistant seedlings (1.39 for 2(‐ΔΔCt) and 1.34 for 1.95(‐ΔΔCt)). Basal stem rot disease (BSR) in oil palm decreased EgUnk1 and EgIPK2b expression in susceptible seedlings but increased EgZFP2 gene expression in resistant ones. The results of this research provide valuable corrections to Ct values obtained directly from RT‐qPCR machines using simple linear regression. Consequently, the Ct values of target genes and reference genes exhibit smaller bias values, rendering gene expression levels more reliable

    Identification of medium‐grain rice based on GS3, a gene linked to rice grain size

    Get PDF
    Previous studies have used molecular markers associated with the GS3 gene to differentiate between short and long rice. However, there are three classifications of grain size: long, short, and medium. The identification of medium‐grain rice using these markers linked to the GS3 gene is yet to be confirmed. Hence, this study aimed to identify medium‐grain rice through phenotyping and genotyping. Grain characteristics including grain length (GL), grain width (GW), and the length‐to‐width ratio (GL/GW) were measured using SmartGrain software. The genotype was then amplified with the GS3 gene‐linked DRR‐GL (double round‐robin for grain length) molecular marker. The results revealed that medium‐grain rice, as identified by the DRR‐GL marker, exhibited DNA bands at the position of 150 bp. These bands differed from those observed in long‐grain rice, but they were consistent with those found in short‐grain rice. The genotypic results further indicated that PCR products obtained with the DRR‐GL marker in medium‐grain rice accounted for 86.8% of the phenotypic variation in grain size. This study provides fundamental genetic insights into the identification of medium‐grain rice and contributes to optimizing effects on rice breeding related to grain size

    315

    full texts

    340

    metadata records
    Updated in last 30 days.
    Indonesian Journal of Biotechnology
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇