272790 research outputs found
Sort by
The affinity towards the hydrophobic region of biomimicking bacterial membranes drives the antimicrobial activity of EFV12 peptide from Lactobacillus gasseri gut microbiota
The gut microbiota consists of a large variety of microorganisms, which interact with the immune system and exert essential roles for the human body health. Many of these microorganisms are also capable of producing various bioactive molecules, such as selective antimicrobial peptides, thus promoting the proliferation of only certain bacterial strains. These result in the shaping of the composition of the local microbiome and the co-evolution with a complex microbiome. Recently, a small peptide, named EFV12 and deriving from the bacterium Lactobacillus gasseri SF1109 regularly placed in the human intestine, showed a significant antimicrobial activity. Here we discuss a biophysical study on the structural changes induced by the peptide on lipid bilayers mimicking bacterial membranes with the aim of shedding light on the molecular features driving the biocidal activity against Gram(+) and Gram(−) strains. Supported Lipid Bilayers and liposomes composed of 1,2-oleoyl-sn-glycero-3-phosphocholine and 1,2-oleoyl-sn-glycero-3-rac-phosphoglycerol, both in the absence and presence of cardiolipin and lipopolysaccharides (LPSs), were selected to investigate the peptide-lipid interactions through a combination of specular Neutron Reflectometry, Dynamic Light Scattering, Small-Angle X-ray Scattering and Circular Dichroism measurements. The obtained results indicated association of EFV12 peptide with the hydrophobic region of lipid bilayers, which caused their destabilization, and is thus driving the antimicrobial activity against bacterial cells
Glass-ceramics and molybdenum doping synergistic approach for Nasicon-type solid-state electrolytes
Advancing energy density, enabling lithium metal anodes, and ensuring unparalleled safety and operational reliability in lithium batteries hinge on advancing inorganic solid-state electrolytes. To overcome current im-pediments, we present an innovative approach that integrates glass-ceramics with a pioneering new Nasicon strategy involving molybdenum doping. In the conducted study, a series of 14Li2O-9Al2O3-38TiO2-(39-x)P2O5- xMoO3 glasses, denoted as LATPMox, along with their corresponding glass-ceramics (LATPMox-GC), have exhibited a promising characteristic as solid electrolytes. X-ray diffraction (XRD) analysis confirms the formation of the novel Mo-doped Nasicon phases in the glass-ceramics, as validated by Rietveld refinement. Examination of the crystallization kinetic behavior of the glasses reveals a three-dimensional nucleation process with spherical particle growth, featuring an activation energy of 165 kJ mol-1. Transmission Electron Microscopy TEM char-acterization aligns crystallization behavior with crystallite and distribution within the glass matrix, resulting in a compact and dense microstructure. The structural properties of the resultant phases are examined through FT-IR, Raman spectroscopy, and TEM-SEAD analysis. Vickers indentation tests were employed to assess the microscopic fracture toughness, and both the glass and glass-ceramics materials demonstrated favorable mechanical per-formance. Optical characterization using UV–visible absorption highlights the reduction of Mo6+ to Mo5+, likely occupying tetrahedral sites within the crystalline lattice. Impedance spectroscopy measurement showcases the effective promotion of ionic conductivity following Mo doping, reaching a total conductivity value of 5.50 × 10-5 Ω-1 cm-1 along with a high lithium transference number of 0.99 at room temperature for LATPMo2.6-GC glass-ceramic. This value is larger than that of many other glass-ceramics as well as that of the well-known lithium phosphorous oxy-nitride LiPON solid electrolyte whose ionic conductivity at RT is around 2 × 10-6 Ω-1 cm-1
Organic fertilizer amendment decreased N2O/(N2O+N2) ratio by enhancing the mutualism between bacterial and fungal denitrifiers in high nitrogen loading arable soils
Si/Graphite Anodes for Solid-State Batteries: Composition Selection via Electrochemical and Chemo-Mechanical Properties
Silicon–graphite composites are among the most widely used anode materials in conventional lithium-ion batteries and recently have been considered as promising candidates in lithium-ion solid-state batteries. In this work, we investigate the influence of the silicon content on the electrochemical and chemo-mechanical behaviors of different Si/graphite composites in solid-state batteries. All anode composites show that an increase of Si presence in the composite enhances the cyclability at a high current density. Using direct-current (DC) polarization and temperature-dependent electrochemical impedance spectroscopy, we observe that both electronic and ionic conductivities are sufficient across the composition series. Operando stress measurements demonstrate how the internal pressure of the anode in a solid-state battery changes as a function of the Si content. Less Si (e.g., ≤10 wt %) in the blended matrix offers smaller internal stress, while it is significantly increased at 20 wt % of Si. This study emphasizes the importance of optimizing the silicon/graphite ratio in the anode composites to balance high battery performance with stable chemo-mechanical propertie
High starch and hemicellulose labile C degradation functional genes increase soil CO2 emissions follow straw return
Tuning Silica Surface Properties for Enhanced Performance in Si–UHMWPE Battery Separators
Exploring the Anion Site Disorder Kinetics in Lithium Argyrodites
Lithium argyrodites are a promising class of solid-state electrolytes with the potential to achieve high conductivities (>10 necessary for use in solid-state batteries. Previous research has shown that structural factors, in particular, site disorder between the sulfide and halide anions, can impact the ionic conductivity of lithium argyrodites. One current hypothesis for this correlation between anion site disorder and ionic transport is a connection to the lithium-ion substructure. However, as there is limited research surrounding the anion disordering process itself, this relationship has yet to be fully understood. This research explores the impact of the composition and synthesis on the anion disordering process through the ( = 0 to 0.4 in 0.1 steps) series of substitutions quenched from different annealing temperatures. Ex situ and in situ diffraction studies show that the anion site disorder within the compounds increases upon Si introduction only for samples quenched from higher annealing temperatures but remains relatively constant at lower annealing temperatures. Based on in situ diffraction measurements, we further monitor the effects of anion mobility at elevated temperatures allowing inference of slower anion disordering kinetics with changing compositional content. We complement the experimental work using nudged-elastic band calculations showing the overall preference of anions for their specific sites and the possibility of anion mobility. This work provides insight into the argyrodites and shows that the anion disordering can be monitored and that the composition has strong influences on the disordering process
Grain boundary complexion modification for interface stability in garnet based solid-state Li batteries
The garnet type solid-state electrolyte (SSE) encounters challenges related to poor interfacial contact with Li metal and dendrite penetration problem. This study addresses these issues by manipulating the surface property of garnet-based LLZTO (Li6.5La3Zr1.6Ta0.4O12) SSE. The manipulation is achieved by varying thickness of Al2O3 atomic layer deposition (ALD), followed by sintering. Research results show that the relative density, ionic conductivity, and hardness of LLZTO are improved while electronic conductivity is reduced due to the formation of multiple complexions at grain boundary (GB). The SSE pellets also demonstrate improved wettability with Li metal, leading to stable galvanostatic Li plating/stripping cycling with low polarization, which allows for batter battery performance than pristine one. The concept of modifying SSE through the grain boundary complexion modification by thin ALD coating for enhancing the dendrite tolerance with better electrochemical properties of SSE may open a new direction for solid state battery research