110451 research outputs found
Sort by
The impact of assurance on compliance management systems on bank directors' decisions
Numerous corporate scandals, in conjunction with managerial misbehavior, demonstrate the need for compliance management systems (CMS) and the relevance of CMS assurance. This study investigates the impact of CMS assurance on German bank directors' perceptions and decisions, and analyzes whether the type of assurer and the level of provided assurance are relevant. For this purpose, we conducted an experiment with 105 bank directors and used ANOVA to analyze their reliance on the hypothetical company's CMS, and their decisions regarding credit granting, purchase, and recommendation of shares. We chose a 2 × 2 + 1 between‐subjects design, manipulating the assurance provider (audit firm vs. third party) and the level of assurance (limited vs. reasonable), and adding a control condition without any assurance. Our results suggest that assured CMS positively affect bank directors' perceptions and decisions, compared to CMS without assurance. Furthermore, we find that our perception measure and all three of our decision measures are strongly associated with the choice of assurance provider, but only two decision measures are associated with the assurance level. Bank directors prefer assurance provision by an audit firm, whereas the findings regarding the impact of the assurance level are inconclusive. The study's results, which confirm the decision‐usefulness of CMS assurance, are of interest for managers, in particular compliance officers, auditors, creditors, regulators, and academics
Negative CO₂ Emissions in the Lime Production Using an Indirectly Heated Carbonate Looping Process
Lime plants are responsible for the production of raw materials that are widely used in the agriculture and the industrial sector. Lime-related products are obtained from the calcination of limestone (mainly CaCO3) at high temperature (900-1200 °C). The calcination reaction is highly endothermic, and thus a heat input, e.g. from the combustion of fuels such as coal, coke, and secondary fuels, is required. CO2 is emitted as a result of the combustion. Additional CO2 is produced due to the chemical conversion of CaCO3 into CaO during the calcination. This so-called “process CO2”, which can only be avoided through CO2 capture, represent approximately 65% of the total CO2 emissions. Overall, the total CO2 emissions per ton of burnt lime vary between 1 to 2 tCO2/tlime.
In order to capture the CO2 emissions from lime plants, post-combustion technologies are to be integrated into the production process. Nonetheless, the majority of these technologies have very high energy requirements, which increase the costs of the final products and reduce the efficiency of the entire system considerably. One noteworthy post-combustion carbon capture technology is the carbonate looping process (CaL). The CaL has the potential to efficiently capture the CO2 from lime plants without considerably increasing the energy requirements of the entire process. The CO2 capture is achieved utilizing limestone as a sorbent, i.e. the raw material of the lime production facility, which makes CaL especially interesting for the application into lime plants. The sorbent binds CO2 from the kiln flue gases in a carbonator, and is regenerated with a temperature increase at a calciner. This technology has been successfully operated up to the pilot scale in Darmstadt, Germany (1 MWth), and in La Pedrera, Spain (1 MWth).
For the regeneration of the sorbent in the standard CaL fuel is burnt directly in the calciner. For this, technically pure oxygen is used, which requires an air separation unit (ASU). The ASU can be avoided by indirectly heating the calciner, and thus the energy penalty is further reduced. One excellent means to achieve this is through heat pipes, which transfer heat from an external combustor into the calciner via evaporation and condensation of a fluid. This indirectly heated carbonate looping process (IHCaL) present several advantages compared to the oxy-fired CaL: reduced energy requirement, improved sorbent activity, lower sorbent attrition rates, and high purity of the captured CO2. The IHCaL has been successfully operated for 400 h at the 300 kWth facility of the Technical University of Darmstadt. Additional test campaigns in Darmstadt will be carried out during 2022 to prove the operability of the IHCaL process under lime plant conditions at the pilot scale.
At the Technical University of Darmstadt, novel concepts for the integration of the IHCaL process into the lime production were developed and evaluated through process simulation. The published results consider the utilization of dried lignite as fuel for both the lime kiln and the IHCaL combustor. Nevertheless, the utilization of renewable fuels of high biogenic content, applied to these concepts has not been discussed yet.
This work presents the results of the energy and mass balances of two IHCaL concepts for the lime production, utilizing high quality solid recovered fuel (SRF; LHV: 21.3 MJ/kg; 40% biogenic carbon fraction) to provide the thermal energy for the carbon capture. Furthermore, a heat recovery steam cycle is implemented in order to produce electrical power from the high temperature output flows (650 °C and 900 °) and the cooling heat from the carbonator (650 °C). For the comparison of the SRF concepts with the lignite concepts, key performance indicators are calculated, namely, net CO2 emissions—considering indirect CO2 emissions and biogenic content—, CO2 capture efficiency, avoided CO2 emissions, and specific primary energy consumption per CO2 avoided (SPECCA)
THz Antenna-Coupled Zero-Bias Schottky Diode Detectors for Particle Accelerators
Semiconductor-based broadband room-temperature Terahertz (THz) detectors are well suitable for beam diagnosis and alignment at accelerator facilities due to easy handling, compact size, no requirement of cooling, direct detection and robustness. Zero-Bias Schottky Diode (ZBSD) based THz detectors are highly sensitive and extremely fast, enabling the detection of picosecond scale THz pulses. This contribution gives an overview of direct THz detector technologies and applications. The ZBSD detector developed by our group has undergone several tests with table-top THz sources and also characterized with the free-electron laser (FEL) at HZDR Dresden, Germany up to 5.56 THz. In order to understand the rectification mechanism at higher THz frequencies, detector modelling and optimization is essential for a given application. We show parametric analysis of a antenna-coupled ZBSD detector by using 3D electromagnetic field simulation software (CST). The results will be used for optimization and fabrication of next generation ZBSD detectors, which are planned to be commissioned at THz generating FEL accelerator facilities in near future
Carbon‐Methanol Based Adsorption Heat Pumps: Identifying Accessible Parameter Space with Carbide‐Derived Carbon Model Materials
In adsorption heat pumps, the properties of the porous adsorbent and the refrigerant determine the performance. Major parameters for this working pair are the total uptake of the adsorptive, its kinetics, and the heat transfer characteristics. In the technical application despite powdered adsorbents, thin consolidated layers of the adsorbent can be attractive and obtained by a binder‐based approach but likely result in competing material properties. Thus, for a process optimization, the accessible parameter space and interdependencies have to be known and were deduced in this work for model porous carbons (carbide‐derived carbons derived from TiC and ZrC) and methanol as well as the addition of different amounts of boron nitride, silver, and graphite as heat‐conductive agents and the use of two binders
Methodik zur datenbasierten Typisierung von Quartieren anhand baulicher Strukturen
Die deutsche Gesellschaft befindet sich in einem Transformationsprozess, um der Klimakrise zu begegnen. Vor dem Hintergrund der notwendigen Dekarbonisierung der Wärmeversorgung von Gebäuden haben sich Konzepte etabliert, welche für Quartiere, d. h. mehrere Gebäude in einem räumlichen Zusammenhang, die Reduktion von Treibhausgasemissionen durch eine Erhöhung der Gebäude- und Anlageneffizienz sowie durch die Einbindung erneuerbarer Energieträger erreichen. Während auf lokaler Handlungsebene eine Vielzahl an Projekten umgesetzt wird, fehlte die empirische Basis, um die Art und Anzahl von Quartieren in Deutschland zu erfassen und die Wirkung von Quartierskonzepten in Hoch- und Szenarienrechnungen zum Klimaschutz zu integrieren.
Die vorliegende Arbeit liefert eine Methodik zur Nutzung von Geobasisdaten für eine Analyse der Bebauungsstruktur und eine Einteilung dieser in geometrisch-topologisch ähnliche Gebiete mittels Clusteranalyse. Eine Vereinigung benachbarter Gebiete ähnlicher Bebauung führt im Anschluss zur Bildung von Quartieren, was schließlich eine statistische Analyse des Quartiersbestandes erlaubt. Daraus können Kenngrößen für die Beschreibung von Typvertretern für Quartiersgruppen, sogenannte Typquartiere, festgelegt werden. Die beispielhafte Anwendung der Methodik am Datensatz Berlins zeigt eine praxisgerechte Quartiersbildung sowie die Verwendbarkeit der Ergebnisse der Quartierstypisierung für vielfältige Forschungs- und Planungszwecke. Insbesondere eine Verwendung des nationalen Geodatenbestandes zur Quartierstypisierung eröffnet die Möglichkeit weiterführender Szenarioanalysen im Kontext nationaler Klimaschutzstrategien
Extending Hyperspectral Imaging for Plant Phenotyping to the UV-Range
Previous plant phenotyping studies have focused on the visible (VIS, 400–700 nm), near-infrared (NIR, 700–1000 nm) and short-wave infrared (SWIR, 1000–2500 nm) range. The ultraviolet range (UV, 200–380 nm) has not yet been used in plant phenotyping even though a number of plant molecules like flavones and phenol feature absorption maxima in this range. In this study an imaging UV line scanner in the range of 250–430 nm is introduced to investigate crop plants for plant phenotyping. Observing plants in the UV-range can provide information about important changes of plant substances. To record reliable and reproducible time series results, measurement conditions were defined that exclude phototoxic effects of UV-illumination in the plant tissue. The measurement quality of the UV-camera has been assessed by comparing it to a non-imaging UV-spectrometer by measuring six different plant-based substances. Given the findings of these preliminary studies, an experiment has been defined and performed monitoring the stress response of barley leaves to salt stress. The aim was to visualize the effects of abiotic stress within the UV-range to provide new insights into the stress response of plants. Our study demonstrated the first use of a hyperspectral sensor in the UV-range for stress detection in plant phenotyping
Utilising Portable Laser-Induced Breakdown Spectroscopy for Quantitative Inorganic Water Testing
At present, the majority of water testing is carried out in the laboratory, and portable field methods for the quantification of elements in natural waters remain to be established. In contrast, portable instruments like portable X-ray fluorescence (pXRF) analysis and portable laser-induced breakdown spectroscopy (pLIBS) have become routine analytical methods for the quantification of elements in solids. This study aims to show that pLIBS can also be used for chemical compositional measurements of natural waters. Bottled mineral waters were selected as sample materials. A surface-enhanced liquid-to-solid conversion technique was used to improve the detection limits and circumvent the physical limitations in liquid analysis. The results show that low to medium mineralised waters can be analysed quantitatively for their ions using the documented method. For more highly concentrated samples, typically above an electrical conductivity (EC) of 1000 µS/cm, further adjustment is required in the form of self-absorption correction. However, water with a conductivity up to this limit can be analysed for the main cations (Li⁺, Na⁺, Mg²⁺, K⁺, Ca²⁺, and Sr²⁺) as well as the main anions (SO₄²⁻ and Cl⁻) using the documented method. This study demonstrates that there is significant potential for developing field-based pLIBS as a tool for quantitative water analysis
^3_Λ H studies in relativistic ion-ion collisions: matter radius and production mechanisms
In the exploration of nuclear physics, hypernuclei stand as unique entities, introducing strangeness into the nuclear landscape and extending it to reveal new structural phenomena. Investigating their internal composition gives access to the hyperon-nucleon and hyperon-hyperon interactions, which are challenging to study directly (e.g., by elastic scattering) due to the short lifetime of hyperons. A better understanding of baryon interactions, including hyperons, improves the knowledge on the nuclear equation of state and, consequently, the inner core structure of neutron stars. Among hypernuclei, the hypertriton (^3_Λ H), and specifically its size, not measured so far, has been indicated as a key probe to understand the nucleosynthesis mechanisms in relativistic heavy-ion collisions. This thesis focuses on ^3_Λ H produced in relativistic ion-ion collision at GSI/SIS18 energies (up to 2 AGeV), in order to access its matter radius and possible production mechanisms.
In the first part of the thesis, the concept of a new accepted experiment that will be performed in 2025 at the R^3B setup in GSI using ^{12}C+^{12}C collisions at 1.9 AGeV is detailed. The experiment aims at the first determination of the ^3_Λ H size, predicted to be a halo hypernucleus, through interaction cross section measurements. To achieve that, a new experimental method to extract the interaction cross section of hypernuclei with a target nucleus, sensitive to their matter radii, was developed. A precision of 15% or better in the interaction cross section can be achieved, allowing extraction of the unknown ^3_Λ H matter radius and assessing its halo or non-halo character. In addition, realistic GEANT4 simulations have been performed in order to optimize the design of the experimental setup, including the main detector, the mini-HYDRA (HYpernuclei Decay at R^3B Apparatus) time-projection chamber, and to assess the feasibility of the experiment. Finally, the design and validation of a new detector, the HYDRA plastic wall, is presented, which is intended to be used as a trigger in the measurement.
The second part of the thesis focuses on the production mechanisms of ^3_Λ H in heavy-ion collisions at the HADES setup in GSI. Here, the production is explored by analyzing existing datasets, taken in 2019 and 2012, with different collision energies, i.e., Ag+Ag at 1.58 AGeV and 1.23 AGeV, and Au+Au at 1.23 AGeV. While the first set is exactly at the strangeness production threshold from elementary nucleon-nucleon collisions (1.58 GeV) the others are below it. The data analysis identified clearly the ^3_Λ H signal from the invariant mass of its decay products, π^-+{}^3He, for both the high and low energy datasets: the significance level for the peaks are 18.27, 5.16, and 4.00 for the Ag+Ag at 1.58 AGeV, 1.23 AGeV, and Au+Au at 1.23 AGeV, respectively. Following that, the associated production cross-sections at and below the strangeness production threshold are extracted and the production cross section ratio of low-to-high energy from the Ag+Ag dataset amounts to 0.30±0.08(stat.)±0.03(sys.). These findings indicate contributions from additional production mechanisms for hypernuclei that need to be further investigated by comparing the experimental results with predictions from transport models
Inverse Scheme to Locally Determine Nonlinear Magnetic Material Properties: Numerical Case Study
We are interested in the determination of the local nonlinear magnetic material behaviour in electrical steel sheets due to cutting and punching effects. For this purpose, the inverse problem has to be solved, where the objective function, which penalises the difference between the measured and the simulated magnetic flux density, has to be minimised under a constraint defined according to the corresponding partial differential equation model. We use the adjoint method to efficiently obtain the gradients of the objective function with respect to the material parameters. The optimisation algorithm is low-memory Broyden–Fletcher–Goldfarb–Shanno (BFGS), the forward and adjoint formulations are solved using the finite element (FE) method and the ill-posedness is handled via Tikhonov regularisation, in combination with the discrepancy principle. Realistic numerical case studies show promising results
Stability of longitudinal bunch length feedback for heavy-ion synchrotrons
In heavy-ion synchrotrons such as the SIS18 at Helmholtzzentrum für Schwerionenforschung, Helmholtz Centre for Heavy Ion Research (GSI), coherent oscillations of the particle bunches are damped by rf feedback systems to increase the stability and to improve the beam quality. In the longitudinal direction, important modes are the coherent longitudinal dipole and quadrupole oscillation. In this paper we present a new and rigorous approach to analyze the longitudinal feedback to damp these modes. The results are applied to the rf feedback loop at GSI that damps the quadrupole mode. The stability analysis is compared with simulations and is in good agreement with results of a beam experiment. Finally, we summarize practical implications for the operation of the feedback system regarding performance and stability