University of Tartu

ADA University of Tartu
Not a member yet
    96863 research outputs found

    Arhitektuurne kuldamine Tallinna vanalinnas: Ajaloolised tehnoloogiad ja nende tuvastamine ning korrastamine kaasajal Tallinna toomkiriku ajanäitajate restaureerimistööde näitel

    No full text
    The purpose of this master’s thesis is to provide an overview of various gilding technologies used on the building exteriors in Tallinn Old Town—an Estonian cultural heritage preservation area listed as UNESCO World Heritage Site—and based on these findings, to propose solutions for research, conservation, maintenance and restoration of historic gildings. As a result of this study, it has become evident that Tallinn Old Town has varied array of gildings, including examples of fire-gilding, oil gilding and electroplating.ehitusmälestise

    Eesti rabade arheoloogiline potentsiaal turbakaevandamise vaatepunktist

    No full text
    Töö käsitleb Eesti rabade arheoloogilist potentsiaali ja selle ohustatust turbakaevandamise tõttu. Kuna mehaaniline freesturba tootmine on destruktiivne ja vähendanud arheoloogiliste leidude avastamise võimalusi, on vajalik senisest paremini kaardistada ning kaitsta rabades leiduvat kultuuripärandit. Koostasin teadaolevatest rabaleidudest kataloogi ja levikukaardi, tuvastades kokku 128 teadet erinevatest leidudest. Samuti pakub töö lahendusi rabaleidude tuvastamiseks ja turbakaevandajate teadlikkuse tõstmiseks.https://www.ester.ee/record=b575124

    Tehisintellektil põhineva tekstiroboti ChatGPT rakendusmeetodid õpetaja töös_ koolituse loomine, läbiviimine ja hindamine kutsekoolis

    No full text
    https://www.ester.ee/record=b5752191*es

    Tsüstilise fibroosi vastsündinute sõeluuringu efektiivsus ja kulutõhusus: tervisetehnoloogiate hindamise raport TTH72

    No full text
    Report in Estonian, summary in Englishhttps://www.ester.ee/record=b5744195*es

    Cad-faili intellektuaalomandi õiguste kaitse

    No full text
    https://www.ester.ee/record=b5754283*es

    Human trafficking in a security framework: factors behind the ineffectiveness of responses to prevent trafficking in persons in Poland (2019-2023)

    No full text
    Human trafficking has emerged as one of the most lucrative crimes in recent history, making it a serious security threat to the state and individuals. As a country deeply affected by this phenomenon, Poland has established a system encompassing national strategies, a legal framework and has ratified various international acts to curb it. The system, however, remains ineffective. This research aims to examine why the Polish system is ineffective, despite continued efforts and previous success by Poland to prevent human trafficking, starting from 2019 until 2023. More specifically, it analyses two main factors, the securitization of trafficking as a national security threat and the deliberate non-compliance with international agreements, as response-level factors impacting the way the responses are established negatively, rendering them ineffective. Through a conducted qualitative content analysis using various primary and secondary sources, this thesis analysed the Polish anti-trafficking system between 2019 and 2023, its areas of ineffectiveness focusing on protection, prosecution and prevention measures, and how the factors established previously are responsible for this ineffectiveness. It has been concluded that the securitization of human trafficking under a national security approach and the deliberate non-compliance of the Polish government with international standards are significant factors responsible for the establishment of ineffective responses to curb human trafficking. The securitization of human trafficking by the Polish state led to the establishment of policy and legal responses undermining the security of victims at the expense of national agendas. Similarly, the state’s continuous non-compliance instances with established international legal regulations resulted in an ineffective judicial system undermining both prosecution and protection measures of Polish anti-trafficking responses. As a result, these factors are extremely important when it comes to understanding why the anti-HT Polish system remains ineffective as they influence and shape the system and how the responses are established

    Andmete turvaline jagamine Sõidukite Internetis plokiahela-põhise hajutatud õppimisega

    No full text
    The Internet of Vehicles enables connected vehicles to share data and collaboratively learn to enhance road safety and traffic efficiency. Federated learning has emerged as a promising approach for enabling privacy-preserving collaborative learning among vehicles, allowing them to jointly train machine learning models without sharing raw sensitive data. However, the centralized architecture commonly used in federated learning introduces significant security vulnerabilities that can compromise system integrity and reliability. While extensive research exists on federated learning security in general, there is insufficient analysis of how these security challenges manifest in specific application contexts, particularly in dynamic environments like IoV. Here we show that integrating Hyperledger Fabric’s permissioned blockchain with zero-knowledge proofs creates a comprehensive security framework that effectively protects federated learning systems against both model tampering, aggregation protocol violation, and unauthorized access while maintaining privacy. Our systematic analysis and implementation reveals that blockchain technology can address core vulnerabilities in centralized federated learning architectures while preserving their privacy benefits, demonstrating advantages over previous approaches that relied solely on cryptographic protocols or trusted third parties. By validating our framework through a concrete IoV data sharing implementation, we establish a practical foundation for securing federated learning in distributed environments. The implications of this research extend beyond vehicular networks to any domain requiring secure collaborative learning among distributed participants. As autonomous systems become increasingly interconnected, this work demonstrates how combining blockchain with federated learning can enable trustworthy data sharing while preserving both privacy and security.Sõidukite Internet (Internet of Vehicles, IoV) võimaldab ühendatud sõidukitel jagada andmeid ja koostööl põhinevalt õppida, et parandada liikluse ohutust ja tõhusust. Hajutatud õppimine (federated learning) on kerkinud perspektiivikaks lähenemiseks privaatsust säilitava koostöö õppe võimaldamiseks sõidukite vahel, võimaldades neil ühiselt treenida masinõppe mudeleid ilma tundlike algandmete jagamiseta. Siiski toob hajutatud õppimise levinud tsentraliseeritud arhitektuur kaasa märkimisväärsed turvariskid, mis võivad ohustada süsteemi terviklikkust ja usaldusväärsust. Kuigi eksisteerib ulatuslik teaduskirjandus hajutatud õppimise turvalisuse kohta üldiselt, pole piisavalt analüüsitud, kuidas need turbeprobleemid avalduvad spetsiifilistes rakendusvaldkondades, eriti dünaamilistes keskkondades nagu sõidukite internet. Käesolevas uurimuses näitame, et Hyperledger Fabric’i lubatud plokiahela integreerimine nullteadmiste tõenditega loob tervikliku turbemudeli, mis tõhusalt kaitseb hajutatud õppimise süsteeme mudeli manipuleerimise, agregeerimisprotokollide rikkumise ja volitamata juurdepääsu eest, säilitades seejuures privaatsuse. Meie süstemaatiline analüüs ja rakendus näitab, et plokiahela tehnoloogia suudab kõrvaldada tsentraliseeritud hajutatud õppimise arhitektuuride põhilised haavatavused, säilitades samal ajal nende privaatsuse eelised. See demonstreerib eeliseid varasemate lähenemiste ees, mis tuginesid ainult krüptograafilistele protokollidele või usaldusväärsetele kolmandatele osapooltele. Meie raamistiku valideerimine konkreetse sõidukite andmejagamise rakenduse kaudu loob praktilise aluse hajutatud keskkondades hajutatud õppimise turvamiseks. Käesoleva uurimuse mõjud ulatuvad sõiduki võrkudest kaugemale, hõlmates kõiki valdkondi, kus on vaja turvalist koostöö õpet hajutatud osalejate vahel. Kuivõrd autonoomsed süsteemid muutuvad järjest ühendatumateks, näitab käesolev lõputöö, kuidas plokiahela ja hajutatud õppimise kombineerimine võimaldab usaldusväärset andmejagamist, säilitades nii privaatsuse kui ka turvalisuse

    Majandustsüklite ja finantskriiside prognoosimine masinõppe abil

    No full text
    Doktoritöö uurib masinõppe meetodite rakendamist makromajanduslike näitajate prognoosimises, keskendudes äristsüklite ja süsteemsete finantskriiside ennustamisele. Uuring ühendab kaks perspektiivi – andmepõhise meetodi, mis kasutab suurt hulka muutujaid mittelineaarsete mustrite tabamiseks majandusnäitajates, ning teooriapõhise lähenemise, mis valib muutujaid mudelitesse makroökonoomika teoreetiliste põhimõtete alusel, – kombineerides teooriapõhist muutujate valikut puhtalt andmetest tuvastatud ulatusliku ennustajate (nt kriisieelsete märkide) kogumiga. Uurimus rõhutab tasakaalustamata andmete käsitlemise, asjakohaste tunnuste valiku ja mittelineaarsuste arvessevõtmise tähtsust masinõppe mudelite rakendamisel. Tulemused viitavad sellele, et võimendamis-meetodid võivad suurte andmekogumite puhul olla tõhusad, kuid need nõuavad hoolikat ettevalmistust, eriti kui andmete maht on piiratud. Doktoritöö toob esile ka ajalooliste andmete põhjal kriiside ennustamise keerukuse ning rõhutab vajadust edasiste uuringute järele mudelite optimeerimise vallas. Doktoritöö demonstreerib, kuidas masinõpe saab täiustada makromajanduslike näitajate prognoosimist, ühendades kaasaegseid masinõppetehnikaid traditsiooniliste ökonomeetriliste lähenemistega. Samuti rõhutatakse töös andmete ja kasutatavate meetodite kriitiliselt hindamise tähtsust tagamaks, et masinõppemudelid täiendaksid, mitte ei asendaks traditsioonilisi ökonomeetrilisi meetodeid. Kuigi suurandmete valdkonna areng on suurendanud masinõppe atraktiivsust, ei ole mõistlik sellele pimesi toetuda ega traditsioonilisi meetodeid kõrvale heita. Selle asemel annavad masinõppemudelid parimaid tulemusi traditsiooniliste ökonomeetriliste tehnikatega kombineerituna. Mõlemal on ühised statistilised alused, mistõttu on paljud uued meetodid traditsioonilistega lähemalt seotud kui esialgu tunduda võib.This thesis explores the application of machine learning methods in macroeconomic forecasting, focusing on business cycles and the prediction of systemic financial crises. It investigates two key approaches: The study integrates a data-driven method that leverages a large set of variables to capture economic nonlinearities and a theory-based approach that selects variables based on macroeconomic principles by combining theory-driven variable selection with a broad range of predictors. The research underscores the significance of addressing imbalanced data, selecting relevant features, and accounting for nonlinearities in machine learning models. It suggests that boosting methods can be effective when dealing with large datasets, although they require careful preparation, especially when the number of data is limited. The thesis also highlights the difficulties of crisis prediction using historical data and emphasizes the need for further research on model optimization. Overall, the thesis demonstrates how machine learning can enhance macroeconomic forecasting by merging modern machine learning techniques with traditional econometric approaches. It stresses the importance of critically evaluating data and methodologies to ensure that machine learning models complement rather than replace conventional methods. While the rise of Big Data has increased the appeal of machine learning, relying on it blindly or discarding traditional approaches is not advisable. Instead, machine learning models tend to perform best when combined with econometric techniques, as they share common statistical foundations, making many new methods more closely linked to traditional ones than they initially appear.https://www.ester.ee/record=b574399

    Profiling Bias in LLMs: Stereotype Dimensions in Contextual Word Embeddings

    No full text
    Large language models (LLMs) are the foundation of the current successes of artificial intelligence (AI), however, they are unavoidably biased. To effectively communicate the risks and encourage mitigation efforts these models need adequate and intuitive descriptions of their discriminatory properties, appropriate for all audiences of AI. We suggest bias profiles with respect to stereotype dimensions based on dictionaries from social psychology research. Along these dimensions we investigate gender bias in contextual embeddings, across contexts and layers, and generate stereotype profiles for twelve different LLMs, demonstrating their intuition and use case for exposing and visualizing bias

    52,858

    full texts

    96,869

    metadata records
    Updated in last 30 days.
    ADA University of Tartu is based in Estonia
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇