Journal of Modern Materials
Not a member yet
87 research outputs found
Sort by
Impact Performance Improvement of Multiscale Hybrid Fiber Reinforced Polymer Composites with CNT
Improving the interface properties of carbon nanotubes increases the mechanical performance of fiber-reinforced polymer matrix composites. Studies on different fiber types and different polymer matrix materials present promising results in literature. The effect of carbon nanotube (CNT) additives on impact performance of fiber reinforced polymer matrix composites produced by vacuum infusion method and drop weight impact test applied. Glass and carbon 1 m2 fiber fabrics were divided into 9 equal square pieces and placed on top of each other to make them multi-layered structure. Fiber reinforcements were produced using vacuum infusion method with epoxy resin. 0.5% of the total composite weight was added to CNT with same production parameters and intraply hybrid composite containing glass, carbon and aramid fibers was also produced. Samples were produced from the composite plates and the drop weight impact test was performed with 50 J impact energy in accordance with ASTM D7136 standard. While this increase could be observed in glass fiber and carbon fiber reinforced composites, the impact energy absorption performance in carbon fiber reinforced composite increased more than 100%. CNT increased the impact performance of multi-layer fiber reinforced polymer matrix composites
Experimental Investigation on Behaviour of Folded Plate
Persistence of research was towards the behaviour of folded plate. In this project, we used GGBS blended ferrocement concrete to cover a folded plate 600 mm x 1800 mm x 150 mm. Ferro cement is a building material that is emerging as an alternative for traditional RCC. According to prior research, folded plates are the most cost-effective and visually acceptable option for longer span roofs. First, we built the folded plate model in ANSYS and investigated its behaviour in terms of load versus deflection. Later, for experimental purposes, we cast a folded plate coated with GGBS mixed ferrocement concrete. The results of the experimental inquiry demonstrate that there was an improvement in flexural behaviour when compared to the traditional model. The same was verified using ANSYS findings. ANSYS analysis aids in comparing and summarising experimental data. Both the analytical and experimental inquiry results show that ferro cement structures are a good alternative to RCC since they are less costly and lighter. Because folded plates retain their effectiveness for a longer length of time when Ferro cement is utilised. Ferro cement has made the components smaller to support the load because ferro cement parts are high in stress when reinforcement is spread
The Influence of Preparation Parameters on Structural and Optical Properties of N-Type Porous Silicon
In this paper, we describe the formation of macroporous silicon (MPS) formed anodically polarized on n type Si (100) substrates at a constant current density under front side illumination using two electrolytes, HF/Ethanol and HF/Ethanol/H2O2. The effect of adding H2O2 in the solution on the resulting pores were investigated by scanning electron microscopy (SEM), infrared spectroscopy (FTIR), contact angle measurements and UV-vis spectrophotometry. The results showed that for the anodization conditions the MPS formed in peroxide based (H2O2)/HF/Ethanol solution exhibited structures with larger pore size and different pore morphologies depending on the etching time than those formed in HF/Ethanol. The pore density and the pore size of the MPS samples increased with the etching time. The infrared absorption spectrum (FTIR) carried out on the freshly prepared sample indicates that the MPS contains Si-Hx bonds which decrease with increasing the etching time. Finally, measurements of contact angle indicate that the formed MPS samples are highly hydrophobic
Physicochemical and Performance Assessment of Clay Based Refractory Bricks for Incinerator Application
Refractories bricks’ excellent thermomechanical and chemical resistant features makes it invaluable materials in modular incinerator ˃ 1000 °C applications. In this research, suitable physicochemical and performance evaluation were employed using X-Ray Fluorescence (XRF), dimensional property assessment, linear shrinkage and water absorption analysis. The samples were sourced from Auchi (ARB1), Afowa (ARB2), Ayogwiri (ARB3), Aviele (ARB4) and Agbede (ARB5) clay minerals deposit in Edo North, Edo State, Nigeria. Then green compact samples were fired into dense phase. The result from the XRF study revealed a generally established composition of ARB1 clay mineral of SiO2: 44.34%, Al2O3: 36.36% and others. ARB2 clay mineral of SiO2: 41.78%, Al2O3: 39.62% and others. ARB3 clay mineral of SiO2: 45.04%, Al2O3: 34.01% and others. ARB4 clay mineral of SiO2: 40.12%, Al2O3: 38.96% and others. ARB5 clay mineral of SiO2: 47.03%, Al2O3: 34.52% and others. The elemental composition of ARB1-5 revealed a similar trend of alumina and silica content to high-Al2O3 bricks (SiO2: 45.0 – 56.0%, Al2O3: 39.0 – 48.0% and others) and commercial clay bricks (SiO2: 48.0%, Al2O3: 36.96% and others) respectively. An average lower percentage error ERL, ERW, and ERH of ARB1 samples 0.148, 0.248 and 0.28% were recorded respectively. The average linear shrinkage and water absorption analysis of 9.91 and 4.71% demonstrated a potential for high elasticity of modulus. The overall data from this research shows that ARB1-5 bricks can find use in incinerator and high temperature applications
Weight Reduction in Aluminum Metal Matrix Composite by Adding Copper Slag as A Reinforcement
The aim of this paper is to fabricate aluminum metal matrix composite which should have less weight than aluminum and better mechanical property. Copper slag (waste from copper extraction) is taken as a reinforcement and the metal matrix composite of aluminum 95% and copper slag 5% was fabricated using the stir casting method. The particle distribution is verified by an optical microscope. Mechanical properties of the composite were calculated by conducting the tensile test, impact test, and hardness test, and the calculated values are compared with the theoretical value and aluminum. The chemical composition of the copper slag is tested and checked with literature values. The tensile strength, hardness, and impact strength of the composite is increased when compared with base metal aluminum but the weight of the composite is less
Synthesis and Characterization of Zinc (II) Phthalocyanine for Screening Potential Solar Cell Dye Application
Phthalocyanine molecules have the potential to be used in select Dye Sensitized Solar Cells (DSSCs) and Luminescent Solar Concentrators (LSCs), due to UV-Vis absorbance in the 300-450 (nm) Soret Band, corresponding to π HOMO-1 to π* LUMO transition and 550-690 (nm) Q-band, corresponding to π HOMO to π* LUMO transitions. In this study Tetranitro Zinc (II) Phthalocyanine is synthesized via base catalysis before the product is characterized via IR, 1H NMR & UV-Vis analysis. Assessing the desirability of the Tetranitro Zinc (II) Phthalocyanine as a solar organic semiconducting dye in DSSCs and LSCs. The desirability is assessed by novel computational DFT calculations, of the aggregation binding mode to deduce if Aggregation-Caused Quenching (ACQ) is occurring in the aggregated sample. ACQ is known to reduce DSSCs and LSCs generation of useful photo-active current. Aggregation-Caused Quenching (ACQ) is mathematically indicated in Phthalocyanine aggregation and Tetranitro Zinc (II) Phthalocyanine’s desirability is assessed for further use in DSSCs and LSCs
Analytical and Experimental Study on Flexural Behavior of Beam-column Joint with Addition of Polypropylene Fibers
Key scope of this research is evaluation of actions of beam to column joints under the impact load acting on it. The beam-column joints, a common area between frame beams and columns. It is the most critical zone to ensure the global response of such momentary resistance structures. Several approaches have been attempted over the years by many civil engineers and practitioners to improve the deficiently thorough joint in between beam and column. The highest bending moment and shear forces in the framed structures are at the junction area. As a result, that joint between beam and column is one of a collapse zone. Joint in outer is more important among the beam-column joints. The effect may be caused by a weight falling on the design object or possibly falling off the design object and hitting the hard surface. In this work, an emphasis has been made to understand the joint vulnerability against impact loads and its behavior is analyzed using the ANSYS software. From this experimental program observed that, impact resistance in RCC beam to column joints can be improved by improving stiffness by added polypropylene fibers and energy absorption can also be improved
Comparative Study on the Mechanical Properties of Weft Knitted and Warp Fabric Reinforced Composites
Knitted fabric composites occupy a special interest in the field of engineering and materials science because of their easy to form complex component and high impact energy absorption. Mechanical tests were carried out in the course, wale and slanting directions of the knitted fabric reinforced composites. The stress-strain curves and failure modes of warp and weft knitted fabrics were investigated and compared. The test results revealed from the composite structure fabricated from warp knitted fabric shown better mechanical properties than weft knitted fabric because of the warp knitted fabric distinct by the process of overlap between the stitches that gave better resistance
Applying a Set of Orthogonal Basis Functions in Numerical Solution of Hallen's Integral Equation for Dipole Antenna of Perfectly Conducting Material
The focus of this paper is on solving Hallen's integral equation for a diploe antenna of perfectly conducting material. A special representation of orthogonal triangular basis functions is used to implement an effective numerical method for solving this equation. The Hallen's formulation is treated in detail and illustrative computations are given for current distributions and radiation patterns
Mechanical Strengths of Sawdust-Ash-Admixed Gum Arabic Concrete
Gum Arabic and sawdust ash were used both as an emulsifier admixture and supplementary cement material to address some of the gaps between pozzolanic and conventional concretes. Four concrete mixtures of 1: 2.24: 2.71, with a water-cement ratio of 0.5, and cement content of 370 kg/m3, was used. The concrete mixtures were designated as M-00, M-00GA, M-10GAS, and M-30GAS, signifying the control, control with gum Arabic (GA), and mix with both gum Arabic and sawdust ash (GAS), respectively. The dosage was 0.5 % of GA and the SDA replacement by wt. % was at 10 % and 30 %, respectively. The concrete samples were cured for 90 days, and tested for mechanical strengths. The results showed that adding GA alone to concrete mixture improved the mechanical strengths of the concrete and the gum Arabic acted like an accelerator. When both GA and SDA were used together in the dosage of 0.5 % with 10 % and 30 % proportions respectively, the mechanical strengths of the concrete decreased. The findings also reported that the two-third strength ratio at 28-days of curing which is used for the conventional concrete in stripping the formwork, may not be appropriate for use on pozzolanic concrete. This is because of the delay in setting times and thus, attaining the required design strength. Therefore, it is proposed to be taken at an age beyond 28 days of curing to carter for the pozzolanic effects which starts well above 28-days