Civil Engineering Journal
Not a member yet
1200 research outputs found
Sort by
The ITB Unit Hydrograph Method: A Novel Approach to User-Defined Unit Hydrograph Development (Part II)
This paper is the second part of a comprehensive two-part series on the ITB Unit Hydrograph (ITB-UH) Method, titled The ITB Unit Hydrograph Method: A Novel Approach to User-Defined Unit Hydrograph Development. Building on the foundational concepts introduced in Part I, this paper delves into advanced applications of the ITB-UH Method, emphasizing its adaptability, calibration capabilities, and real-world utility. The ITB-UH Method introduces novel derivations for the Peak Rate Factor (Kp) and Peak Discharge (Qp), along with a time-step normalization approach that enables flexible adjustments to unit rainfall durations and a systematic calibration process. These innovations significantly enhance the method's versatility and accuracy in modeling flood discharge across diverse hydrological conditions. The practical applicability of the ITB-UH Method is demonstrated through real-world flood discharge calculations in the Pinamula River, located in Buol District, Central Sulawesi Province. Three illustrative examples highlight the method's versatility: (1) analyzing flood hydrographs at a 1-hour time step to showcase its practical applicability for flood management; (2) recalculating flood hydrographs with a finer 0.5-hour time step to demonstrate its adaptability to varying temporal resolutions; and (3) refining model parameters to improve alignment with observed flood hydrographs, underscoring the method's capacity for calibration and optimization. To evaluate the method's performance, robust metrics such as the Nash–Sutcliffe Efficiency (NSE), Percentage Bias (PBIAS), and Index of Agreement (IA) are employed. These metrics confirm the ITB-UH Method's accuracy and reliability, with results consistently aligning closely with observed data. Collectively, the findings underscore the ITB-UH Method's suitability across diverse hydrological settings and its potential to enhance both the verification of existing SUH methods and the development of user-defined hydrographs. By enabling more accurate and effective flood management, the ITB-UH method represents a significant advancement in hydrological modeling, with broad implications for water resource management and infrastructure planning worldwide. Doi: 10.28991/CEJ-2025-011-05-015 Full Text: PD
A Review of Advances in Peat Soil Stabilisation Technology: Exploring the Potential of Palm Oil Fuel Ash Geopolymer as a Soil Stabiliser Material
This study aims to highlight the latest developments in the field of peat soil stabilisation technology via chemical stabilisation. The review examines the use of traditional stabilisers such as OPC and various non-traditional stabiliser materials, i.e., Palm Oil Fuel Ash (POFA)-OPC blends, chemical solutions, and geopolymer materials, to enhance the Unconfined Compressive Strength (UCS) characteristics of peat soils based on the ASTM D 4609 requirements. OPC, POFA-OPC blends, and alkaline solutions mostly produced stabilised soil samples that fell short of the ASTM requirements. Existing studies on the use of waste-derived geopolymers to treat peat soils are limited, while the use of POFA geopolymer materials has mostly focused on the improvement of clayey and silty soils. The results of soil stabilisation with geopolymer were very encouraging, as the strength gains were in line with the ASTM soil strength requirements. As a result of this review, it can be concluded that POFA geopolymer is a viable soil stabiliser material with the addition of Ground Granulated Blast Furnace Slag, and that the use of POFA-GGBFS geopolymer to enhance the strength properties of peat soils should be investigated. Doi: 10.28991/CEJ-2023-09-08-017 Full Text: PD
AI Mix Design of Fly Ash Admixed Concrete Based on Mechanical and Environmental Impact Considerations
It has become very important in the field of concrete technology to develop intelligent models to reduce overdependence on laboratory studies prior to concrete infrastructure designs. In order to achieve this, a database representing the global behavior and performance of concrete mixes is collected and prepared for use. In this research work, an extensive literature search was used to collect 112 concrete mixes corresponding to fly ash and binder ratios (FA/B), coarse aggregate and binder ratios (CAg/B), fine aggregate and binder ratios (FAg/B), 28-day concrete compressive strength (Fc28), and the environmental impact point (P) estimated as a life cycle assessment of greenhouse gas emissions from fly ash- and cement-based concrete. Statistical analysis, linear regression (LNR), and artificial intelligence (AI) studies were conducted on the collected database. The material binder ratios were deployed as input variables to predict Fc28 and P as the response variables. From the collected concrete mix data, it was observed that mixes with a higher cement content produce higher compressive strengths and a higher carbon footprint impact compared to mixes with a lower amount of FA. The results of the LNR and AI modeling showed that LNR performed lower than the AI techniques, with an R2(SSE) of 48.1% (26.5) for Fc and 91.2% (7.9) for P. But ANN, with performance indices of 95.5% (9.4) and 99.1% (2.6) for Fc and P, respectively, outclassed EPR with 90.3% (13.9) and 97.7% (4.2) performance indices for Fc and P, respectively. Taylor's and variance diagrams were also used to study the behavior of the models for Fc28 and P compared to the measured values. The results show that the ANN and EPR models for Fc28 lie within the RMSE envelop of less than 0.5% and a standard deviation of between 15 MPa and 20 MPa, while the coefficient of determination sector lies between 95% and 99% except for LNR, which lies in the region of less than 80%. In the case of the P models, all the predicted models lie within the RMSE envelop of between 0.5% and 1.0%, a coefficient of determination sector of 95% and above, and a standard deviation between 2.0 and 3.0 points of impact. The variance between measured and modeled values shows that ANN has the best distribution, which agrees with the performance accuracy and fits. Lastly, the ANN learning ability was used to develop a mix design tool used to design sustainable concrete Fc28 based on environmental impact considerations. Doi: 10.28991/CEJ-SP2023-09-03 Full Text: PD
Short-, Medium-, and Long-Term Prediction of Carbon Dioxide Emissions using Wavelet-Enhanced Extreme Learning Machine
Carbon dioxide (CO2) is the main greenhouse gas responsible for global warming. Early prediction of CO2 is critical for developing strategies to mitigate the effects of climate change. A sophisticated version of the extreme learning machine (ELM), the wavelet enhanced extreme learning machine (W-EELM), is used to predict CO2 on different time scales (weekly, monthly, and yearly). Data were collected from the Mauna Loa Observatory station in Hawaii, which is ideal for global air sampling. Instead of the traditional method (singular value decomposition), a complete orthogonal decomposition (COD) was used to accurately calculate the weights of the ELM output layers. Another contribution of this study is the removal of noise from the input signal using the wavelet transform technique. The results of the W-EELM model are compared with the results of the classical ELM. Various statistical metrics are used to evaluate the models, and the comparative figures confirm the superiority of the applied models over the ELM model. The proposed W-EELM model proves to be a robust and applicable computer-based technology for modeling CO2concentrations, which contributes to the fundamental knowledge of the environmental engineering perspective. Doi: 10.28991/CEJ-2023-09-04-04 Full Text: PD
Statistical Analysis Approaches in Scour Depth of Bridge Piers
A local scour is the removal of bed material from around the pier of the bridge. This bed removal is considered a big problem and is of great concern for hydraulic engineers. They should find economic solutions for this problem. The exaggerated local scour around bridge piers leads to many problems for the whole bridge structure, such as stability problems that may lead to the bridge's destruction. This paper aims to verify the scour depth around different shapes of uniform bridge piers for different flow conditions than those done by previous researchers using different prediction models. Where the consistency of previous experimental investigations is verified by multiple nonlinear regression analysis (MNLR), Gene Expression Programming (GEP) and Artificial Neural Network (ANN) models. In the comparison of values that were measured and predicted by the four models (CFD, MNLR, ANN, and Gene), it is seen that the ANN model has the ability to predict the Ys/b values higher than other models used in relation to the measured values. This makes the ANN model superior in predicting the Ys/b value over the other used models, followed by the Gene model. In comparison, the values of the R2and RMSE for the four models that were used in this study, for the Ys/b model using the ANN had a value of 0.9978 and 0.0147, respectively, while those for the Ys/b model using the Gene model were 0.9800 and 0.0375, respectively. Doi: 10.28991/CEJ-2023-09-01-011 Full Text: PD
Interpretation Methods for Seismic Downhole Test in Inclined Boreholes
Geotechnical investigations often involve inclined boreholes, which can be used for downhole (DH) seismic surveys. However, as there is no interpretation method for downhole tests in inclined boreholes (IDH), this study proposes alternative interpretation methods based on the direct method (DM), interval method (IM), modified interval method (MIM), and refracted ray path method (RRM). We have named the proposed methods, adding an I to the original name to indicate that they are performed in an inclined well, i.e., DMI, IMI, MIMI, and RRMI. To analyze the applicability of the proposed methods, eight simple models with horizontal layers and four 2D models were used to obtain the P- and S-wave velocity profiles. Among all the proposed methods, the RRMI method showed the best fit between the calculated S-wave velocity (Vs) profile and the real models, providing good reliability. To test the equations and hypotheses, new interpretation steps were developed based on Snell's law and a modification of the numerical bisection method, which showed that the error increased slightly as the dip angle of the well decreased. The next step was to test the accuracy of the RRMI method in the field and develop downhole test processing software for vertical and inclined boreholes. Doi: 10.28991/CEJ-2023-09-10-016 Full Text: PD
Utilization of Bitumen Modified with Pet Bottles as an Alternative Binder for the Production of Paving Blocks
This study considers the utilization of bitumen modified with molten polyethylene terephthalate (PET) waste bottles as an alternative binder in paving blocks. PET waste was used at 2, 4, 6, 8, and 10% to modify bitumen in the production of paving blocks. Compressive strength test and skid resistance test were conducted on the paving block samples to evaluate their mechanical strength properties, while water absorption and the Cantabro abrasion tests were carried out to ascertain the durability of the paving block samples. The PET-modified bitumen paving blocks (PMBPB) have enhanced compressive strength and skid resistance compared to unmodified bitumen paving blocks. Also, a significant reduction in water absorption rate of up to 56% was achieved in PET-modified bitumen paving blocks (PMBPB) compared to the unmodified sample. The abrasion loss in the PMBCB samples was the least compared to that in normal cement paving blocks and unmodified bitumen paving blocks. The maximum compressive strength and least water absorption for the PET-modified bitumen concrete paving blocks were obtained at a 10% PET replacement level. It can be concluded that enhanced compressive strength and durability in cement paving blocks and unmodified bitumen paving blocks could be achieved with the use of PET modified bitumen in concrete paving block production, and this will also encourage PET waste recycling and contribute meaningfully to sustainability in concrete paving block production. Doi: 10.28991/CEJ-2023-09-01-08 Full Text: PD
Characteristic and Physicochemical Properties of Peat Soil Stabilized with Sodium Hydroxide (NaOH)
Peat in various phases of decomposition has poor shear strength and high compressive deformation. For this research study, it will focus on stabilizing peat soil using NaOH. There are two main tests that were conducted in this research study, which are index property testing and the compaction test. For index property testing, there were six (6) experiments conducted to study the index properties of disturbed peat soil, which are moisture content, fiber content, organic content, liquid limit, pH, and specific gravity. Then, for the compaction test, a 4.5kg rammer was used to determine the best mixture of stabilizer blended with different volumes of 5%, 7%, and 9% stabilizer. The desired outcome of this study is to stimulate further research into the use of the chemical NaOH as a peat soil stabilizer for improved soil usage. 7% and 9% of NaOH only have a slightly different percentage, and it can be concluded that this was the optimum percentage of NaOH as a chemical stabilizer for peat soil. It can be seen clearly that 5% is the higher dry density with a lesser moisture content of the peat. When the percentage of NaOH was increased, the graph pattern also changed. NaOH has been observed as an alteration agent for peat soil dry density. It can be seen clearly that 5% NaOH is the higher dry density of the peat with the lesser moisture content and is suitable as a peat soil stabilizer. The increment of oxygen content recorded changes from 13.3% to 23%, while the sodium (Na) content decreased significantly with the increment of oxygen (O). Sodium content decreased from 8.7% for untreated specimens to 4.5% and 5.5% when peat was treated with NaOH, with 5% of NaOH and 9% of NaOH. Doi: 10.28991/CEJ-2023-09-09-09 Full Text: PD
Effect of Eco-Processed Pozzolan (EPP) Mixed with Calcium Oxide to Dry Density and Physicochemical of Peat Soil
Peat is a problematic soil, and it is a common problem faced by engineers in construction. The characteristics that have been noted before are high moisture content, poor shear strength, great compressibility, and long-term settlement. For this research study, it focuses on stabilizing peat soil using EPP and CaO. There are three main tests that were conducted in this research study: index properties testing, compaction testing, and For Index Properties testing, five (5) experiments were conducted to study the index properties of disturbed peat soil, which are moisture content, fiber content, liquid limit, organic content, pH, and specific gravity. Next, for the Compaction Test, using a 4.5 kg rammer, define the optimum mixture of stabilizer that is mixed with different volumes of 5%, 10%, 15%, and 20% of stabilizer. In this study, the expected result is to inspire an in-depth study of the use of EPP material and chemical CaO as peat soil stabilizers for better utilization of problematic soil. The main finding was that the mixture with the exact amount of moisture, EPP, and CaO helped stabilize the soil and cure peat soil. Thus, this study confirms the idea of treating peat with EPP and CaO, enhancing the properties of peat soil, and sustaining the settlement over loading for a period of time accordingly. 20% mix of EPP and CaO produces the highest dry density, showing that dry density increases linearly with the amount of mixture to stabilize peat. The crystallization process between peat and EPP was pronouncedly observed where smaller particles identified as EPP filled the gaps in between the pores identified from SEM. The silicon (Si content developed from each spectrum ranged from 14.4% to 17.7%. The EDX results show significant results where mineral crystallization occurred in the coagulation process. Doi: 10.28991/CEJ-2023-09-07-011 Full Text: PD
Effect of Bonding Area on Bond Stress Behavior of GFRP Bars in Concrete
The application of Glass Fiber Reinforced Polymer (GFRP) bars is suitable for concrete structures that are susceptible to corrosion, owing to their corrosion-resistant characteristics. Therefore, it is feasible to reduce the concrete cover on reinforced concrete beams by utilizing GFRP bars. However, this can reduce the bonding strength between GFRP bars and concrete. Therefore, this study aims to investigate the bonding behavior between GFRP bars and concrete as a preliminary test for structural applications. The bond stress behavior between GFRP bars and concrete was analyzed by 18 pull-out tests. The test specimens comprised GFRP bars with three different variations, namely GFRP bars with concrete cover (GFRP-C), GFRP bars without concrete cover (GFRP-E), and GFRP bars with a complete wrapping of GFRP sheet (GFRP-C-Sheet). The bond stress-slip curve, bond strength, and failure pattern were utilized to analyze the effect of each variation. The research results indicate that the bonding stress between GFRP bars and concrete was strongly influenced by the concrete cover, where the bonding strength decreased by 65%. Nevertheless, the utilization of a complete wrapping GFR) sheet resulted in a 26.4% increase in bonding stress. The present study has identified three distinct modes of failure, including pull-out (GFRP-C), concrete crushing (GFRP-E), and GFRP sheet debonding (GFRP-C-Sheet). Doi: 10.28991/CEJ-SP2023-09-010 Full Text: PD