HAL Clermont Université
Not a member yet
    80886 research outputs found

    Archaeological analysis of the voussoirs of the collapsed transverse arch of the nave: First results and new hypotheses

    No full text
    International audienceThe fire of April 15, 2019 at the cathedral of Notre-Dame de Paris offered archaeologists and art historians a unique opportunity to work closely with an emblematic building, a World Heritage Site. The recovery of most of the voussoirs from the collapsed transverse arch of the nave has made it possible to study the operating chain of an essential element of the cathedral, from the choice of material to its implementation, including the techniques used by the stonemason or the knowledge of the joiner. This technical analysis has made it possible to establish comparisons with the other elevations of the cathedral, and also with other Early and High Gothic buildings, allowing us to offer a new proposal for the development of knowledge and the overall chronology of construction

    Extended review of multi-agent solutions to Advanced Public Transportation Systems challenges

    No full text
    International audienceAbstract Over the past few decades, intelligent transportation systems (ITS) have emerged as an effective way to improve the performance of transportation systems. ITS provide innovative services, enhance travel safety, provide travellers with more choices, and make transportation systems more efficient. Multi-agent systems (MAS), which define autonomous interacting entities, are suitable for modelling distributed and intelligent systems in general and ITS in particular. This paper provides an in-depth review of multi-agent systems applied to Advanced Public Transportation Systems (APTS), a subclass of ITS dedicated to managing public transportation networks. We carefully analysed 38 papers in this study, published in 19 journals during 31 years (1990–2020). We perform a synthetic analysis of the trends in this domain and a qualitative analysis focused on multi-agent systems’ dimensions and properties. We show that the MAS approach is well suited to the real-time management of disturbances thanks to their delegation process, and their pro-activeness and autonomy properties

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    From dome to duplex: Convergent gravitational collapse explains coeval intracratonic doming and nappe tectonics, central Australia

    No full text
    International audienceIn central Australia, an apparently coeval gneiss dome (Entia Dome) developed adjacent to a thrust belt (Arltunga Nappe Complex) within an intracratonic setting. Here we employ a combination of fieldwork, geochronology, and numerical modeling to investigate the structure and tectonic evolution of these features. We present a structural model linking an extensional domain comprising the Entia Dome, across a transitional zone containing the Bruna décollement zone and the Illogwa shear zone, into a contractional zone comprising thrusts and duplexes of the Arltunga Nappe Complex. Supported by numerical modeling, we propose a tectonic model in which the dome and nappe complex formed synchronously because of the convergent gravitational collapse of the 30−40-km-deep Paleozoic Harts Range rift

    Emergence of long-range angular correlations in low-multiplicity proton-proton collisions

    No full text
    International audienceThis Letter presents the measurement of near-side associated per-trigger yields, denoted ridge yields, from the analysis of angular correlations of charged hadrons in proton-proton collisions at s\sqrt{s} = 13 TeV. Long-range ridge yields are extracted for pairs of charged particles with a pseudorapidity difference of 1.4<Δη<1.81.4 < |\Delta\eta| < 1.8 and a transverse momentum of 1<pT<21 < p_{\rm T} < 2 GeV/cc, as a function of the charged-particle multiplicity measured at midrapidity. This study extends the measurements of the ridge yield to the low multiplicity region, where in hadronic collisions it is typically conjectured that a strongly-interacting medium is unlikely to be formed. The precision of the new results allows for the first direct quantitative comparison with the results obtained in e+e\mathrm {e^{+}e^{-}} collisions at s\sqrt{s} = 91 GeV, where initial-state effects such as pre-equilibrium dynamics and collision geometry are not expected to play a role. In the multiplicity range where the e+e\mathrm {e^{+}e^{-}} results have good precision, the measured ridge yields in pp collisions are substantially larger than the limits set in e+e\mathrm {e^{+}e^{-}} annihilations. Consequently, the findings presented in this Letter suggest that the processes involved in e+e\mathrm {e^{+}e^{-}} annihilations do not contribute significantly to the emergence of long-range correlations in pp collisions

    Effect of salivary fluid characteristics on the physical features of in vitro bread bolus: from the absence of saliva to artificially simulated hypersalivation

    No full text
    International audienceSaliva facilitates food oral processing, bolus formation, swallowing, and sensory perception, in addition to contributing to oral health and phonation. Ageing, health affections, and polymedication are among many causes altering salivary production, modifying the mastication process, the food impregnation ratio, and in turn altering the characteristics of the bolus, swallowing, and digestion. In this in vitro work, using the AM2 masticator apparatus, which replicates the mechanical actions taking place while chewing solid foods and produces realistic food bolus in various oral conditions, we investigated the effect of salivary fluid characteristics, i.e., composition, quantity (from absence to hypersalivation), temperature, and enzymatic action, on the physical characteristics (i.e., particle size distribution (PSD), bolus mass, salivary fluid content) of in vitro boluses of Traditional French baguette.A ready-to-swallow bolus of baguette displayed on average a d50 value (median particle size by mass) of 4.1 ± 0.4 mm, with saliva fluid constituting ~35% of the final bolus mass. The absence of saliva in mouth led to a deficient oral processing, forming bread boluses constituted by extremely big particles (ca. 80% of particles had a size >7.1 mm) that likely cannot be swallowed safely. On the contrary, an excess of saliva favoured an excessive breaking down of bread, leading to bread boluses constituted by smaller particles than those formed under healthy salivary conditions (d50 decreased from 4.1 mm to 3.1 mm), having a higher salivary fluid content (+10%). On the other hand, the salivary fluid temperature did not affect PSD, d50, bolus mass, or salivary fluid content of in vitro bread boluses, however, the addition of human salivary α-amylase did, favouring particle size reduction (d50 decreased to 2.6 mm). Therefore, beyond the correlation between bolus hydration by saliva and food properties such as hardness and moisture content, our findings indicate that the quantity of salivary fluid present in the oral cavity and the enzymatic activity of salivary α-amylase during bread mastication significantly influence both the particle size distribution and the fluid content of bread boluses, ultimately determining the physical properties of the bolus and, therefore, potentially impacting the subsequent swallowing process

    Prompt and non-prompt J/ψ/\psi production at midrapidity in Pb-Pb collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV

    No full text
    International audienceThe transverse momentum (pTp_{\rm T}) and centrality dependence of the nuclear modification factor RAAR_{\rm AA} of prompt and non-prompt J/ψ/\psi, the latter originating from the weak decays of beauty hadrons, have been measured by the ALICE collaboration in Pb-Pb collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV. The measurements are carried out through the e+e{\rm e}^{+}{\rm e}^{-} decay channel at midrapidity (y|y| 5 GeV/cc, which becomes stronger with increasing collision centrality. The results are consistent with similar LHC measurements in the overlapping pTp_{\rm T} intervals, and cover the kinematic region down to pTp_{\rm T} = 1.5 GeV/cc at midrapidity, not accessible by other LHC experiments. The suppression of prompt J/ψ/\psi in central and semicentral collisions exhibits a decreasing trend towards lower transverse momentum, described within uncertainties by models implementing J/ψ/\psi production from recombination of c and c\overline{\rm c} quarks produced independently in different partonic scatterings. At high transverse momentum, transport models including quarkonium dissociation are able to describe the suppression for prompt J/ψ/\psi. For non-prompt J/ψ/\psi, the suppression predicted by models including both collisional and radiative processes for the computation of the beauty-quark energy loss inside the quark-gluon plasma is consistent with measurements within uncertainties

    Embedded Software of the KM3NeT Central Logic Board

    No full text
    International audienceThe KM3NeT Collaboration is building and operating two deep sea neutrino telescopes at the bottom of the Mediterranean Sea. The telescopes consist of latices of photomultiplier tubes housed in pressure-resistant glass spheres, called digital optical modules and arranged in vertical detection units. The two main scientific goals are the determination of the neutrino mass ordering and the discovery and observation of high-energy neutrino sources in the Universe. Neutrinos are detected via the Cherenkov light, which is induced by charged particles originated in neutrino interactions. The photomultiplier tubes convert the Cherenkov light into electrical signals that are acquired and timestamped by the acquisition electronics. Each optical module houses the acquisition electronics for collecting and timestamping the photomultiplier signals with one nanosecond accuracy. Once finished, the two telescopes will have installed more than six thousand optical acquisition nodes, completing one of the more complex networks in the world in terms of operation and synchronization. The embedded software running in the acquisition nodes has been designed to provide a framework that will operate with different hardware versions and functionalities. The hardware will not be accessible once in operation, which complicates the embedded software architecture. The embedded software provides a set of tools to facilitate remote manageability of the deployed hardware, including safe reconfiguration of the firmware. This paper presents the architecture and the techniques, methods and implementation of the embedded software running in the acquisition nodes of the KM3NeT neutrino telescopes

    Pseudorapidity dependence of anisotropic flow and its decorrelations using long-range multiparticle correlations in Pb-Pb and Xe-Xe collisions

    No full text
    International audienceThe pseudorapidity dependence of elliptic (v2v_2), triangular (v3v_3), and quadrangular (v4v_4) flow coefficients of charged particles measured in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV and in Xe-Xe collisions at sNN=5.44\sqrt{s_{\rm NN}}=5.44 TeV with ALICE at the LHC are presented. The measurements are performed in the pseudorapidity range 3.5<η<5-3.5 < \eta < 5 for various centrality intervals using two- and multi-particle cumulants with the subevent method. The flow probability density function (p.d.f.) is studied with the ratio of flow coefficient v2v_2 calculated with four- and two-particle cumulant, and suggests that the variance of flow p.d.f. is independent of pseudorapidity. The decorrelation of the flow vector in the longitudinal direction is probed using two-particle correlations. The results measured with respect to different reference regions in pseudorapidity exhibit differences, argued to be a result of saturating decorrelation effect above a certain pseudorapidity separation, in contrast to previous publications which assign this observation to non-flow effects. The results are compared to 3+13+1 dimensional hydrodynamic and the AMPT transport model calculations. Neither of the models is able to simultaneously describe the pseudorapidity dependence of measurements of anisotropic flow and its fluctuations. The results presented in this work highlight shortcomings in our current understanding of initial conditions and subsequent system expansion in the longitudinal direction. Therefore, they provide input for its improvement

    Helium identification with LHCb

    No full text
    International audienceThe identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pppp collision data at s=13TeV\sqrt{s}=13\,{\rm TeV} recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5fb15.5\,{\rm fb}^{-1}. A total of around 10510^5 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50%50\% with a corresponding background rejection rate of up to O(1012)\mathcal O(10^{12}). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    5,221

    full texts

    79,496

    metadata records
    Updated in last 30 days.
    HAL Clermont Université is based in France
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇