76006 research outputs found
Sort by
Sunitinib in Patients With Breast Cancer With
PURPOSE: The Targeted Agent and Profiling Utilization Registry Study is a phase II basket trial evaluating the antitumor activity of commercially available targeted agents in patients with advanced cancer and genomic alterations known to be drug targets. Results from cohorts of patients with metastatic breast cancer (BC) with
METHODS: Eligible patients had measurable disease, Eastern Cooperative Oncology Group performance status 0-2, adequate organ function, and no standard treatment options. Simon\u27s two-stage design was used with a primary end point of disease control (DC), defined as objective response (OR) or stable disease of at least 16 weeks duration (SD16+) according to RECIST v1.1. Secondary end points included OR, progression-free survival, overall survival, duration of response, duration of stable disease, and safety.
RESULTS: Forty patients with BC with
CONCLUSION: Sunitinib did not meet prespecified criteria to declare a signal of antitumor activity in patients with BC with eithe
Control of hippocampal synaptic plasticity by microglia-dendrite interactions depends on genetic context in mouse models of Alzheimer\u27s disease.
INTRODUCTION: Human data suggest susceptibility and resilience to features of Alzheimer\u27s disease (AD) such as microglia activation and synaptic dysfunction are under genetic control. However, causal relationships between these processes, and how genomic diversity modulates them remain systemically underexplored in mouse models.
METHODS: AD-vulnerable hippocampal neurons were virally labeled in inbred (C57BL/6J) and wild-derived (PWK/PhJ) APP/PS1 and wild-type mice, and brain microglia depleted from 4 to 8 months of age. Dendrites were assessed for synapse plasticity changes by evaluating spine densities and morphologies.
RESULTS: In C57BL/6J, microglia depletion blocked amyloid-induced synaptic density and morphology changes. At a finer scale, synaptic morphology on individual branches was dependent on microglia-dendrite physical interactions. Conversely, synapses from PWK/PhJ mice showed remarkable stability in response to amyloid, and no evidence of microglia contact-dependent changes on dendrites.
DISCUSSION: These results demonstrate that microglia-dependent synaptic alterations in specific AD-vulnerable projection pathways are differentially controlled by genetic context
A Pan-Cancer Patient-Derived Xenograft Histology Image Repository with Genomic and Pathologic Annotations Enables Deep Learning Analysis
Patient-derived xenografts (PDX) model human intra- and intertumoral heterogeneity in the context of the intact tissue of immunocompromised mice. Histologic imaging via hematoxylin and eosin (H&E) staining is routinely performed on PDX samples, which could be harnessed for computational analysis. Prior studies of large clinical H&E image repositories have shown that deep learning analysis can identify intercellular and morphologic signals correlated with disease phenotype and therapeutic response. In this study, we developed an extensive, pan-cancer repository of \u3e1,000 PDX and paired parental tumor H&E images. These images, curated from the PDX Development and Trial Centers Research Network Consortium, had a range of associated genomic and transcriptomic data, clinical metadata, pathologic assessments of cell composition, and, in several cases, detailed pathologic annotations of neoplastic, stromal, and necrotic regions. The amenability of these images to deep learning was highlighted through three applications: (i) development of a classifier for neoplastic, stromal, and necrotic regions; (ii) development of a predictor of xenograft-transplant lymphoproliferative disorder; and (iii) application of a published predictor of microsatellite instability. Together, this PDX Development and Trial Centers Research Network image repository provides a valuable resource for controlled digital pathology analysis, both for the evaluation of technical issues and for the development of computational image–based methods that make clinical predictions based on PDX treatment studies. Significance: A pan-cancer repository of \u3e1,000 patient-derived xenograft hematoxylin and eosin–stained images will facilitate cancer biology investigations through histopathologic analysis and contributes important model system data that expand existing human histology repositories
Human Microbiome and Frailty: From Observations of Clinically Relevant Associations to Insights into Biological Mechanisms
The human body is colonized on nearly every external and internal surface by communities of microbes including bacteria, viruses, fungi, archaea, and eukarya, called microbiota. The sum of commensal microbial genes outnumbers human host genes by over 100-fold. Next generation sequencing technology has facilitated over two decades of study characterizing the relationship between this metagenome and virtually every dimension of human health, including obesity, heart disease, diabetes mellitus, cancers, inflammatory dis- eases, and neurological disorders [1–7]. Further investigation of molecular interactions between host and microbiota has elucidated diverse mechanisms by which these communities influence and are influenced by human health and disease. This chapter aims to summarize our present understanding of microbiome associations with frailty, the proposed pathways by which the microbiota may influence the development of physical frailty, and potential implications
Intermittent clearance of p21-highly-expressing cells extends lifespan and confers sustained benefits to health and physical function.
A key challenge in aging research is extending lifespan in tandem with slowing down functional decline so that life with good health (healthspan) can be extended. Here, we show that monthly clearance, starting from 20 months, of a small number of cells that highly express p21Cip1 (p21high ) improves cardiac and meta- bolic function and extends both median and maximum lifespans in mice. Importantly, by assessing the health and physical function of these mice monthly until death, we show that clearance of p21high cells improves physical function at all remaining stages of life, suggesting healthspan extension. Mechanistically, p21high cells encompass several cell types with a relatively conserved proinflammatory signature. Clearance of p21high cells reduces inflammation and alleviates age-related transcriptomic signatures of various tissues. These findings demonstrate the feasibility of healthspan extension in mice and indicate p21high cells as a ther- apeutic target for healthy aging
Variation in mesenchymal KITL/SCF and IGF1 expression in middle age underlies steady-state hematopoietic stem cell aging.
Intrinsic molecular programs and extrinsic factors including proinflammatory molecules are understood to regulate hematopoietic aging. This is based on foundational studies using genetic perturbation to evaluate causality. However, individual organisms exhibit natural variation in the hematopoietic aging phenotypes and the molecular basis of this heterogeneity is poorly understood. Here, we generated individual single-cell transcriptomic profiles of hematopoietic and nonhematopoietic cell types in 5 young adult and 9 middle-aged C57BL/6J female mice, providing a web-accessible transcriptomic resource for the field. Among all assessed cell types, hematopoietic stem cells (HSCs) exhibited the greatest phenotypic variation in expansion among individual middle-aged mice. We computationally pooled samples to define modules representing the molecular signatures of middle-aged HSCs and interrogated, which extrinsic regulatory cell types and factors would predict the variance in these signatures between individual middle-aged mice. Decline in signaling mediated by adiponectin, kit ligand (KITL) and insulin-like growth factor 1 (IGF1) from mesenchymal stromal cells (MSCs) was predicted to have the greatest transcriptional impact on middle-aged HSCs, as opposed to signaling mediated by endothelial cells or mature hematopoietic cell types. In individual middle-aged mice, lower expression of Kitl and Igf1 in MSCs was highly correlated with reduced lymphoid lineage commitment of HSCs and increased signatures of differentiation-inactive HSCs. These signatures were independent of expression of aging-associated proinflammatory cytokines including interleukin-1β (IL-1β), IL-6, tumor necrosis factor α and RANTES. In sum, we find that Kitl and Igf1 expression are coregulated and variable between individual mice at the middle age and expression of these factors is predictive of HSC activation and lymphoid commitment independently of inflammation
A systematic strategy for identifying causal single nucleotide polymorphisms and their target genes on Juvenile arthritis risk haplotypes.
BACKGROUND: Although genome-wide association studies (GWAS) have identified multiple regions conferring genetic risk for juvenile idiopathic arthritis (JIA), we are still faced with the task of identifying the single nucleotide polymorphisms (SNPs) on the disease haplotypes that exert the biological effects that confer risk. Until we identify the risk-driving variants, identifying the genes influenced by these variants, and therefore translating genetic information to improved clinical care, will remain an insurmountable task. We used a function-based approach for identifying causal variant candidates and the target genes on JIA risk haplotypes.
METHODS: We used a massively parallel reporter assay (MPRA) in myeloid K562 cells to query the effects of 5,226 SNPs in non-coding regions on JIA risk haplotypes for their ability to alter gene expression when compared to the common allele. The assay relies on 180 bp oligonucleotide reporters ( oligos ) in which the allele of interest is flanked by its cognate genomic sequence. Barcodes were added randomly by PCR to each oligo to achieve \u3e 20 barcodes per oligo to provide a quantitative read-out of gene expression for each allele. Assays were performed in both unstimulated K562 cells and cells stimulated overnight with interferon gamma (IFNg). As proof of concept, we then used CRISPRi to demonstrate the feasibility of identifying the genes regulated by enhancers harboring expression-altering SNPs.
RESULTS: We identified 553 expression-altering SNPs in unstimulated K562 cells and an additional 490 in cells stimulated with IFNg. We further filtered the SNPs to identify those plausibly situated within functional chromatin, using open chromatin and H3K27ac ChIPseq peaks in unstimulated cells and open chromatin plus H3K4me1 in stimulated cells. These procedures yielded 42 unique SNPs (total = 84) for each set. Using CRISPRi, we demonstrated that enhancers harboring MPRA-screened variants in the TRAF1 and LNPEP/ERAP2 loci regulated multiple genes, suggesting complex influences of disease-driving variants.
CONCLUSION: Using MPRA and CRISPRi, JIA risk haplotypes can be queried to identify plausible candidates for disease-driving variants. Once these candidate variants are identified, target genes can be identified using CRISPRi informed by the 3D chromatin structures that encompass the risk haplotypes
Proteins required for stereocilia elongation during mammalian hair cell development ensure precise and steady heights during adult life.
Mammalian auditory hair cells (HCs) are not naturally regenerative and must preserve their elaborate structure to ensure lifelong hearing. Stereocilia, the actin-based projections at the HC surface that detect sound vibration, are particularly vulnerable to damage incurred from noise and aging. We show that the tip-localized protein module GPSM2–GNAI required for stereocilia development is also involved in stereocilia maintenance in mature cells. Inactivating Gpsm2 in adult mouse HCs results in low-frequency hearing deficits and stereocilia height reduction proportional to the region reported to turn over actin at the distal tip. Molecular insight into how actin exchange ensures stable height in mature stereocilia will help clarify whether insults during life shift this balance and compromise auditory function
Improved DNA Extraction and Amplification Strategy for 16S rRNA Gene Amplicon-Based Microbiome Studies.
Next-generation sequencing technology has driven the rapid advancement of human microbiome studies by enabling community-level sequence profiling of microbiomes. Although all microbiome sequencing methods depend on recovering the DNA from a sample as a first critical step, lysis methods can be a major determinant of microbiome profile bias. Gentle enzyme-based DNA preparation methods preserve DNA quality but can bias the results by failing to open difficult-to-lyse bacteria. Mechanical methods like bead beating can also bias DNA recovery because the mechanical energy required to break tougher cell walls may shear the DNA of the more easily lysed microbes, and shearing can vary depending on the time and intensity of beating, influencing reproducibility. We introduce a non-mechanical, non-enzymatic, novel rapid microbial DNA extraction procedure suitable for 16S rRNA gene-based microbiome profiling applications that eliminates bead beating. The simultaneous application of alkaline, heat, and detergent (\u27Rapid\u27 protocol) to milligram quantity samples provided consistent representation across the population of difficult and easily lysed bacteria equal to or better than existing protocols, producing sufficient high-quality DNA for full-length 16S rRNA gene PCR. The novel \u27Rapid\u27 method was evaluated using mock bacterial communities containing both difficult and easily lysed bacteria. Human fecal sample testing compared the novel Rapid method with a standard Human Microbiome Project (HMP) protocol for samples from lung cancer patients and controls. DNA recovered from both methods was analyzed using 16S rRNA gene sequencing of the V1V3 and V4 regions on the Illumina platform and the V1V9 region on the PacBio platform. Our findings indicate that the \u27Rapid\u27 protocol consistently yielded higher levels of Firmicutes species, which reflected the profile of the bacterial community structure more accurately, which was confirmed by mock community evaluation. The novel \u27Rapid\u27 DNA lysis protocol reduces population bias common to bead beating and enzymatic lysis methods, presenting opportunities for improved microbial community profiling, combined with the reduction in sample input to 10 milligrams or less, and it enables rapid transfer and simultaneous lysis of 96 samples in a standard plate format. This results in a 20-fold reduction in sample handling time and an overall 2-fold time advantage when compared to widely used commercial methods. We conclude that the novel \u27Rapid\u27 DNA extraction protocol offers a reliable alternative for preparing fecal specimens for 16S rRNA gene amplicon sequencing