University of Modena and Reggio Emilia
Archivio istituzionale della ricerca - Università di Modena e Reggio EmiliaNot a member yet
114529 research outputs found
Sort by
Accelerazione basata sull’indice: join in tempo reale e query ibride
L’analisi dei dati in tempo reale `e diventata sempre pi`u importante con la crescita di sistemi interconnessi. Un’applicazione comune `e il mon- l’elaborazione dei dati energetici. Questi dati sono costantemente generati dai sensori installato su diversi dispositivi che producono e consumano energia. Di nuova generazione I dati devono essere elaborati frequentemente per offrire informazioni significative subito. L’approccio tipico alla lavorazione coinvolge produttore e consumatore modelli computazionali. Sono stati utilizzati numerosi quadri di elaborazione dei dati proposto di consumare flussi di dati (dati in tempo reale) da vari input eseguire calcoli distribuiti, combinare risultati individuali e Fornisci approfondimenti. Questi framework utilizzano in genere il parallelismo della pipeline sui dati in entrata ed effettuare varie operazioni online come l’adesione, aggregazione e filtraggio.
I dati in streaming sono gestiti all'interno di finestre (scorrevoli, a cascata, di sessione, ecc.), dove le tuple vengono continuamente aggiunte e quelle scadute rimosse. L'unione di flussi è fondamentale per i dati in tempo reale, ma presenta sfide computazionali maggiori rispetto all'unione di batch tradizionali, a causa della continua ricerca, aggiunta ed eliminazione di dati. Gli operatori di unione comuni includono unioni di uguaglianza e disuguaglianza (theta), con le unioni di disuguaglianza che risultano particolarmente intensive. Per affrontare queste sfide, si propongono due intuizioni chiave: 1) identificare distribuzioni di dati distorte in tempo reale e implementare strutture di indicizzazione dedicate per ridurre i costi di aggiornamento; 2) sfruttare strutture di dati ottimizzate, con strutture mutabili efficienti per l'inserimento e immutabili per la ricerca, per ottimizzare il processo di unione dei flussi.
In questo lavoro di dottorato propongo nuove soluzioni per l’elaborazione di join di flussi distribuiti. Uno dei contributi chiave `e un metodo di indicizzazione che utilizza un filtro dedicato efficiente in termini di spazio per monitorare la frequenza delle chiavi di input in tempo reale. Questo metodo, chiamato STA-Join, adatta la logica di elaborazione dei dati in base all’asimmetria dei dati. Inoltre, ho ampiamente confrontato questa tecnica con gli approcci esistenti. Inoltre, ho anche introdotto una struttura dati a due stadi per gestire ed elaborare efficacemente elementi della finestra scorrevole (contenuti streaming delimitati) con operatori di disuguaglianza complessi. Questo approccio, denominato SPO-Join, divide la finestra scorrevole in strutture dati mutabili (efficienti per l’inserimento) e immutabili (efficienti per la ricerca). Nonostante le sfide affrontate, come la gestione dello stato per l’elaborazione distribuita, le garanzie di elaborazione e i meccanismi di concorrenza efficienti, i risultati sperimentali dei sistemi di elaborazione di flussi distribuiti dimostrano che le soluzioni proposte superano i metodi all’avanguardia esistenti.
Allo stesso modo, man mano che i modelli di intelligenza artificiale generativa si diffondono in vari settori, tra cui quello energetico, i database vettoriali vengono sempre più utilizzati per archiviare dati industriali multidimensionali e fornire suggerimenti efficaci a questi modelli. Le prestazioni e l'accuratezza del I modelli dipendono in gran parte dalla qualità dei suggerimenti. Tuttavia, il recupero efficiente di vettori rilevanti, in particolare per le query ibride con un elevato richiamo, è un'attività complessa. Propongo una soluzione sensibile alla frequenza per una struttura di dati indice per affrontare questo problema.Real-time data analysis has become increasingly important with the growth of interconnected systems. One common application is the continuous monitoring of energy data. This data is constantly generated by the sensors installed on different energy-producing and consuming devices. Newly generated data need to be processed frequently to offer meaningful insights promptly. The typical processing approach involves producer and consumer computational patterns. Numerous data processing frameworks have been proposed to consume streaming (real-time) data from various input devices, perform distributed computation, combine individual results, and provide insights. These frameworks commonly employ pipeline parallelism on incoming data and carry out various online operations such as joining, aggregation, and filtering.
Streaming data is confined to windows (sliding, tumbling, session, etc.), where newly arriving tuples are continually inserted and expired tuples are removed frequently. Stream join is an essential operation for handling real-time data, however, it comes with additional computational challenges compared to traditional batch join, due to the continuous look-up, add, and delete data points from streaming windows. Common join operators include equality or inequality (theta) joins. The stream inequality join is particularly computationally intensive because it requires additional overhead to hold the contents of the streaming window using index data structures. To tackle this challenge, we identify two key insights: 1) identifying skewed data distributions in real-time and implementing dedicated indexing structures for skewed keys to reduce index update costs; 2) leveraging optimized data structures, including insert-efficient mutable and search-efficient immutable structures to optimize the search stream join process.
In this Ph.D. work, I propose novel solutions for distributed stream join processing. One of the key contributions is an indexing method that uses a space-efficient dedicated filter to monitor the frequency of input keys in real-time. This method, called STA-Join, adapts the data processing logic based on the skewness of the data. Additionally, I have extensively compared this technique with existing approaches. Moreover, I have also introduced a two-stage data structure for handling and processing sliding window items (bounded streaming contents) with complex inequality operators. This approach, named SPO-Join, divides the sliding window into mutable (insert-efficient) and immutable (search-efficient) data structures. Despite facing challenges such as state management for distributed processing, processing guarantees, and efficient concurrency mechanisms, experimental results from distributed stream processing systems demonstrate that the proposed solutions outperform existing state-of-the-art methods.
Similarly, as generative AI models become more widespread in various industries, including the energy sector, vector databases are increasingly being used to store multidimensional industry data and provide effective prompts to these models. The performance and accuracy of the models depend largely on the quality of the prompts. However, efficiently retrieving relevant vectors, especially for hybrid queries (vectors and predicate conditions) with high recall, is a challenging task. I propose a frequency-aware solution for an index-data structure to address this issue to facilitate approximate nearest neighbor (ANN) searches in high-dimensional spaces, especially for hybrid queries. I have extensively compared this solution with state-of-the-art vector indexing approaches for various types of queries (point, range, and mixed), and the results show that it performs better than the alternatives
La facilitazione della partecipazione dei bambini in classe attraverso la creatività e l’uso delle nuove tecnologie
Questa tesi analizza strategie innovative utili a sostenere la partecipazione attiva dei bambini nelle classi scolastiche in relazione all’uso dei media digitali e riguarda la metodologia di facilitazione della comunicazione che promuove l’agency, ovvero la loro capacità di scelta basata sull’autonomia personale. La ricerca riassume i risultati della complessa attività sul campo che ha coinvolto 135 bambini di una scuola primaria del nord Italia, che hanno partecipato ad incontri facilitati e attività laboratoriali in piccoli gruppi. Il progetto, suddiviso in quattro fasi, è stato strutturato nel corso di due anni scolastici con attività di facilitazione in 6 classi secondo una scansione temporale concordata con le insegnanti. La raccolta e l’analisi dei dati, che ha caratterizzato la fase empirica di questo studio, ha utilizzato un metodo che combina gli strumenti della ricerca qualitativa con quelli propri dell’approccio quantitativo, per garantire maggiore completezza ai risultati dell’indagine. Il lavoro di tesi ha, innanzitutto, evidenziato modalità diverse di facilitazione attivate durante la ricerca, con interventi iniziali da parte della facilitatrice che hanno proposto azioni combinate che hanno favorito il dialogo e ridistribuito equamente l’autorità epistemica tra adulti e bambini, e azioni di facilitazione nuove presenti nell’ultima fase, che hanno sostenuto il coordinamento tra pari. In questo secondo caso la facilitatrice, sospendendo le azioni di facilitazione, ha incrementato l’autorità epistemica dei bambini, che hanno indagato e approfondito autonomamente le ragioni del loro lavoro, mostrando partecipazione attiva alla produzione di conoscenza. In secondo luogo, l’analisi delle interazioni ha mostrato alcuni problemi incontrati durante il processo di facilitazione che hanno permesso di verificare le azioni di facilitazione che favoriscono la produzione di agency e quelle che la ostacolano, per migliorare gli interventi in classe. In terzo luogo, lo studio ha messo in luce l’uso del digitale come metodo innovativo che, affiancato a quelli tradizionali, ha permesso ai bambini di acquisire maggiori autonomie, sostenendo la loro produzione di narrazioni. Infine, il lavoro ha approfondito i processi comunicativi autonomi che si sviluppano nelle interazioni tra pari e questo ha rappresentato uno degli aspetti più importanti ed innovativi della ricerca. L’osservazione di queste interazioni ha mostrato come i bambini nelle loro azioni, che non sono state incoraggiate né sostenute dai contributi della facilitatrice, hanno manifestato agency, scegliendo modi e contenuti per narrare esperienze e punti di vista, utilizzando media digitali nella ricerca e nella produzione di materiali. L’analisi della comunicazione autonoma ha permesso di evidenziare alcune caratteristiche ricorrenti relative alla comunicazione tra pari. Le interazioni hanno mostrato una maggiore imprevedibilità dovuta all’autonomia di espressione, quindi all’agency dei bambini, che si è manifestata soprattutto attraverso: 1) conflitti e competizioni, caratterizzati da azioni volte ad affermare autorità epistemica, in termini di scelte rispetto ai contenuti, ai significati delle attività svolte e all’ uso degli strumenti digitali; 2) negoziazioni, che hanno permesso ai bambini di confrontare punti di vista oppure di gestire le divergenze ricercando soluzioni accettate da tutti; 3) facilitazioni, sperimentate da parte di uno o più bambini all'interno del gruppo, che hanno attivato forme comunicative dialogiche simili a quelle della facilitatrice adulta. La ricerca ha messo in luce differenze e somiglianze tra azioni della facilitatrice volte alla promozione dell’agency, coordinamento della partecipazione da parte dei bambini e comunicazione autonoma tra pari.This thesis analyzes innovative strategies useful for supporting children's active participation in school classrooms in relation to the use of digital media and concerns the methodology of communication facilitation that promotes agency, that is, their ability to make choices based on personal autonomy.
The research summarizes the main results of the complex fieldwork involving 135 children from an elementary school in northern Italy, who participated in facilitated meetings and workshop activities in small groups. The project, divided into four phases, was structured over the course of two school years with facilitation activities in 6 classes according to a time schedule agreed with the teachers. The data collection and analysis, which characterized the empirical phase of this study, used a method that combines the tools of qualitative research with those proper to the quantitative approach to ensure greater completeness to the survey results.
The thesis work has, first of all, highlighted different modes of facilitation activated during the research, with initial interventions by the facilitator proposing combined actions that fostered dialogue and redistributed epistemic authority equally between adults and children, and new facilitation actions present in the last phase, which supported peer coordination. In the latter case, the facilitator, by suspending the facilitation actions, increased the epistemic authority of the children, who independently investigated and deepened the reasons for their work, showing active participation in knowledge production.
Secondly, the analysis of the interactions showed some problems encountered during the facilitation process, which made it possible to verify the facilitation actions that promote the production of agency and those that hinder it, in order to improve classroom interventions.
Third, the study highlighted the use of digital as an innovative method that, alongside traditional methods, enabled children to gain greater autonomy by supporting their production of narratives.
Finally, the work delved into the autonomous communicative processes that develop in peer interactions, and this was one of the most important and innovative aspects of the research. Observation of these interactions showed how children in their actions, which were neither encouraged nor supported by the facilitator's contributions, manifested agency, choosing ways and content to narrate experiences and points of view, using digital media in research and production of materials. The analysis of autonomous communication revealed some recurring characteristics related to peer communication. Interactions showed greater unpredictability due to children's autonomy of expression, thus agency, manifested mainly through: 1) conflicts and competitions, characterized by actions aimed at asserting epistemic authority, in terms of choices with respect to content, the meanings of the activities carried out and the 'use of digital tools; 2) negotiations, which allowed children to compare points of view or to manage disagreements by seeking solutions accepted by all; and 3) facilitation, experienced by one or more children within the group, which activated dialogic communicative forms similar to those of the adult facilitator.
The research revealed differences and similarities between facilitator actions aimed at promoting agency, coordination of participation by children and autonomous peer communication
Unveiling the Truth in Pain: Neural and Behavioral Distinctions Between Genuine and Deceptive Pain
Background/Objectives: Fake pain expressions are more intense, prolonged, and include non-pain-related actions compared to genuine ones. Despite these differences, individuals struggle to detect deception in direct tasks (i.e., when asked to detect liars). Regarding neural correlates, while pain observation has been extensively studied, little is known about the neural distinctions between processing genuine, fake, and suppressed pain facial expressions. This study seeks to address this gap using authentic pain stimuli and an implicit emotional processing task. Methods: Twenty-four healthy women underwent an fMRI study, during which they were instructed to complete an implicit gender discrimination task. Stimuli were video clips showing genuine, fake, suppressed pain, and neutral facial expressions. After the scanning session, participants reviewed the stimuli and rated them indirectly according to the intensity of the facial expression (IE) and the intensity of the pain (IP). Results: Mean scores of IE and IP were significantly different for each category. A greater BOLD response for the observation of genuine pain compared to fake pain was observed in the pregenual anterior cingulate cortex (pACC). A parametric analysis showed a correlation between brain activity in the mid-cingulate cortex (aMCC) and the IP ratings. Conclusions: Higher IP ratings for genuine pain expressions and higher IE ratings for fake ones suggest that participants were indirectly able to recognize authenticity in facial expressions. At the neural level, pACC and aMCC appear to be involved in unveiling the genuine vs. fake pain and in coding the intensity of the perceived pain, respectively
Biconometric Connections in Dental Implants: A Pilot Mechanical Study
Background: In dental implants, micro-gaps at the fixation–abutment interface can cause peri-implantitis and/or loosening or loss of the fixation screw; therefore, three-dimensional imaging is widely used to examine different types of connections. In the present study, we focus on the analysis on biconometric connections to detect and (possibly) measure the presence of micro-gaps in the as-positioned state and after repeated loading and unloading. Methods: Seven biconometric dental implants were characterized using micro-computed tomography (micro-CT). In two specimens (group 1), the cap was inserted, and only the apical portion was imaged, to evaluate the cap–abutment connection; in the remaining five specimens (group 2), the fixture–abutment connection was analyzed. Two implants in group 2 were also subjected to load tests to verify whether stresses could induce the formation of micro-gaps as a consequence of preload loss. Results: Micro-CT analysis showed the absence of micro-gaps greater than 10 μm in both cap–abutment and abutment–fixture connections. This was verified, in the fixture–abutment connection, even after mechanical loading and unloading. The results were reproducible in all the investigated samples in the different experimental conditions. Conclusions: In the human force range during chewing, the conical connection showed a high level of resistance to micro-gap formation at the implant–abutment interface. The absence of micro-gaps, as demonstrated here, provides encouraging preliminary data regarding the stability of the biconometric connections, which will be further verified in follow-up studies on a larger sample size
Towards More Expressive Human-Robot Interactions: Combining Latent Representations and Diffusion Models for Co-speech Gesture Generation
A wide array of new real-world applications using social robots and virtual agents are driving humans towards closer connections with these artificial systems. Consequently, nonverbal human-robot interactions have become a major research focus, aiming for more versatile and natural exchanges and communication. In this work, we utilize a diffusion model to generate fine-grained, highly natural motions, coupled with a latent gesture representation obtained via a Vector Quantized Variational Auto-Encoder (VQVAE) architecture. This approach addresses the well-known limitations of training and inference time. As a result, we achieved up to a 5-fold increase in generation speed. In addition, we conducted a subjective evaluation which demonstrated that, despite using discrete gesture representations, the quality of the generated nonverbal behavior has been preserved
Phosphatemia is an Independent Prognostic Factor in Amyotrophic Lateral Sclerosis
Objective: The objective of this study was to evaluate the prognostic value of several muscle damage biomarkers. Methods: Data from Piemonte and Valle d'Aosta Amyotrophic Lateral Sclerosis (PARALS) were considered for this study. Survival was defined as the time from diagnosis to death, tracheostomy, or the censoring date. Blood levels of potassium, creatinine, creatine kinase, phosphorus, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) diagnosis were evaluated as potential prognostic biomarkers. A Cox model was developed for each biomarker and adjusted for sex, onset age, onset site, and diagnostic delay. Significant findings from PARALS were evaluated in the Pooled Resource Open-Access Amyotrophic Lateral Sclerosis Clinical Trials (PRO-ACT) database. Additionally, a joint model was constructed to evaluate the prognostic role of phosphatemia slope over time using longitudinal data from PRO-ACT. Results: A total of 1,444 and 1,023 patients were included in the PARALS and PRO-ACT cohorts, respectively. Only creatinine (hazard ratio [HR] = 0.65, 95% confidence interval [CI] = 0.50–0.85) and phosphorus (HR = 1.14, 95% CI = 1.04–1.24) showed a significant association with survival in the PARALS cohort. These findings were further validated in the PRO-ACT cohort (creatinine HR = 0.21, 95% CI = 0.13–0.35, p < 0.0001; phosphorus HR = 2.35, 95% CI = 1.13–4.88, p = 0.02). Longitudinal data from the PRO-ACT database showed that an increase of 0.1 mmol/l per month in phosphate levels was also associated with a HR of 8.26 (95% CI = 1.07–96.6, p = 0.044). Interpretation: Creatininemia was confirmed as a prognostic marker in amyotrophic lateral sclerosis (ALS). Additionally, both phosphatemia levels at diagnosis and its rate of change over time were identified as a potential prognostic marker for ALS. As with other blood biomarkers, phosphate levels are cost-effective and minimally invasive to measure, supporting their potential use in clinical trials. ANN NEUROL 2025
Sviluppo di nuovi strumenti, approcci e sistemi basati sulle nanotecnologie per la termoelettricità e la raccolta di energia
Il successo globale dipende dalla generazione, raccolta e gestione del budget energetico. L'elettricità è l'energia moderna più influente, con utilizzi di mercato in rapida crescita, generati principalmente da tecnologie basate sulla combustione. Tali tecnologie e l'elettronica di consumo diffusa generano molto calore sprecato e "calore di bassa qualità", calore che è troppo basso, disomogeneo, discontinuo o impossibile da recuperare con metodi convenzionali.
I nanomateriali e la nanotecnologia stanno rendendo i generatori termoelettrici (TEG), che convertono il calore in elettricità senza parti in movimento, più attraenti. Inoltre, c'è un forte impegno politico per il recupero energetico e una rinnovata attenzione all'esplorazione spaziale, un settore correlato ai TEG. Questo studio esamina la risposta termoelettrica a temperatura intermedia e alta dei materiali nanostrutturati innovativi. I risultati hanno fatto conoscere i meccanismi di drogaggio, la nanostrutturazione e le prestazioni termoelettriche e hanno fatto progredire lo sviluppo di materiali di conversione energetica ad alta efficienza.
Per quanto riguarda i materiali, gli studi riportati in questa tesi includono ZnO drogato con Al, ZnSe drogato con Fe, ZnSe drogato con Cu, Bi2Te3 drogato con Se e SnO drogato con Mg, e si concentrano sull'impatto del drogaggio e della nanostrutturazione sulle proprietà termoelettriche. Viene condotta un'analisi sistematica dell'influenza di diverse condizioni di temperatura sulle proprietà termoelettriche. Sono stati utilizzati due approcci per la preparazione sia di nanoparticelle che di film sottili dei materiali: sintesi idrotermica e sputtering magnetron. Per quanto riguarda le metodologie e le tecniche di caratterizzazione, è stata utilizzata la XRD per eseguire la caratterizzazione strutturale. La topografia superficiale è stata studiata utilizzando AFM. La morfologia dei nanocristalli è stata esaminata tramite SEM e l'analisi della composizione elementare è stata condotta tramite EDX. Le proprietà di trasporto sono state misurate con il metodo a 4 sonde nell'intervallo di temperatura 25–350°C.
La tesi è organizzata come segue. I capitoli da 1 a 3 coprono gli argomenti sopra menzionati, vale a dire l'introduzione alla termoelettricità su scala nanometrica, materiali e metodi e tecniche per nanostrutture termoelettriche. Il capitolo 4 studia le proprietà TE dei film sottili di ZnO (AZO) drogato con Al, sottolineando l'influenza di diverse concentrazioni di drogaggio di Al (2–8 at.%) sulle caratteristiche di trasporto elettrico e termoelettrico. I film sottili di AZO, con uno spessore di 300 nm, sono stati depositati tramite sputtering magnetron RF. Le caratterizzazioni strutturali e morfologiche indicano che livelli di drogaggio aumentati determinano una migliore conduttività elettrica, con resistività che scende al di sotto di 2 × 10–3 Ohm˖cm al 3 at.% di Al. Il coefficiente di Seebeck è stato visto variare tra 22 e 33 μV/K, raggiungendo un picco all'8 at.% di drogaggio. Nel capitolo 5, studiamo l'impatto del drogaggio di Fe2+ sulle caratteristiche TE delle nanoparticelle di ZnSe prodotte dalla tecnica idrotermale. L'indagine SEM ha dimostrato agglomerati di nanocristalliti di dimensioni variabili a tutti i livelli di drogaggio, mentre la spettroscopia XRD e Raman ha convalidato la struttura cubica dei campioni. Le caratteristiche di trasporto elettrico sono state migliorate con concentrazioni di drogaggio Fe potenziate e il fattore di potenza è stato aumentato da 13 μWm–1K–2 a 120 μWm–1K–2, con un fattore di potenza massimo di 9 × 10–3 Wm–1K–2 a 150°C.Global success depends on energy budget generation, harvesting, and management. Electricity is the most influential modern energy, with rapidly rising market uses, mostly generated by combustion-based technologies. Such technologies and pervasive consumer electronics generate a lot of wasted heat and 'low grade heat'—heat that is too low, inhomogeneous, discontinuous, or impossible to recover by conventional methods.
Nanomaterials and nanotechnology are making thermoelectric generators (TEGs), which convert heat-to-electricity without moving parts, more appealing. In addition, there is strong political commitment to energy recovery and renewed attention on space exploration, a TEG-related industry. This study examines innovative nanostructured materials' intermediate and high-temperature thermoelectric response. The findings shed knowledge on doping mechanisms, nanostructuring, and thermoelectric performance and advance the development of high-efficiency energy conversion materials.
On the material side, the studies reported in this thesis include Al doped ZnO, Fe doped ZnSe, Cu doped ZnSe, Se doped Bi2Te3 and Mg doped SnO, and focus on the impact of doping and nanostructuring on the thermoelectric properties. Systematic analysis of the influence of different temperature conditions on thermoelectric properties is conducted. Two approaches for the preparation of both nanoparticles and thin films of the materials were used: hydrothermal synthesis and magnetron sputtering. On the side of characterization methodologies and techniques, XRD was used to perform structural characterisation. Surface topography was investigated using AFM. Morphology of the nanocrystals was examined by SEM and elemental composition analysis was conducted by EDX. The transport properties were measured by the 4-probe method in the temperature range 25–350°C.
The thesis is organized as follows. Chapters 1 to 3 covers the topics mentioned above, namely the introduction to nanoscale thermoelectricity, thermoelectric nanostructures materials and methods and techniques. Chapter 4 studies the TE properties of Al-doped ZnO (AZO) thin films, emphasising the influence of different Al doping concentrations (2–8 at.%) on electrical and thermoelectric transport characteristics. The AZO thin films, measuring 300 nm in thickness, were deposited via RF magnetron sputtering. Structural and morphological characterisations indicate that increased doping levels result in improved electrical conductivity, with resistivity falling below 2 × 10–3 Ohm˖cm at 3 at.% Al. The Seebeck coefficient was seen to vary between 22 and 33 μV/K, reaching a peak at 8 at.% doping. In chapter 5, we study the impact of Fe2+ doping on the TE characteristics of ZnSe nanoparticles produced by the hydrothermal technique. SEM investigation demonstrated agglomerates of nanocrystallites of varying sizes at all doping levels, whereas XRD and Raman spectroscopy validated the cubic structure of the samples. Electrical transport characteristics were improved with enhanced Fe doping concentrations and the power factor was increased from 13 μWm–1K–2 to 120 μWm–1K–2, with a maximum power factor of 9 × 10–3 Wm–1K–2 at 150°C. Chapter 6 focus on the details study of the influence of copper doping on the TE characteristics of ZnSe nanoparticles produced by the hydrothermal technique. Our research indicates that Cu doping markedly increases electrical conductivity and the Seebeck coefficient, resulting in enhanced power factors. The Cu-doped ZnSe nanostructures showed various phases with a nanocrystalline shape, characterised by an average grain size of less than 5 nm
Mathematical discussion in classrooms as a technologically-supported activity fostering participation and inclusion
Whole-class mathematical discussion in a problem-solving activity is recognized as a powerful pedagogical activity but also a challenge for teachers who must consider several difficulties that learners might face, particularly in terms of an overload of Working Memory and Executive Functions. This study investigates how the use of a digital platform (Padlet) can support participatory and inclusive mathematical classroom discussion. We proposed a teaching experiment based on graphical tasks anticipating integral calculus to grade 13 students, and we examined how the use of the digital platform plays a role in the construction and interpretation of new mathematical objects emerging from the activity. The use of Instrumental Genesis and Double Instrumental Genesis frameworks allowed us to make the affordances of the tool emerge. As a result, we got evidence of how mathematical discussion may develop as a network of interactions, feedback, and connection of input and discuss examples of how active participation and inclusion are enhanced by the tool affordances. Indeed, the digital platform allowed easy interaction, with many ways to represent and express the ongoing evolution of personal and shared meanings and the possibility to manage the time of the activity. This fostered students’ participation and students which did not participate in previous discussions were actively engaged in it