750 research outputs found

    Evolution of magnetic fields in stars across the upper main sequence: I. Catalogue of magnetic field measurements with FORS1 at the VLT

    Full text link
    To properly understand the physics of Ap and Bp stars it is particularly important to identify the origin of their magnetic fields. For that, an accurate knowledge of the evolutionary state of stars that have a measured magnetic field is an important diagnostic. Previous results based on a small and possibly biased sample suggest that the distribution of magnetic stars with mass below 3 M_sun in the H-R diagram differs from that of normal stars in the same mass range (Hubrig et al. 2000). In contrast, higher mass magnetic Bp stars may well occupy the whole main-sequence width (Hubrig, Schoeller & North 2005). In order to rediscuss the evolutionary state of upper main sequence magnetic stars, we define a larger and bias-free sample of Ap and Bp stars with accurate Hipparcos parallaxes and reliably determined longitudinal magnetic fields. We used FORS1 at the VLT in its spectropolarimetric mode to measure the magnetic field in chemically peculiar stars where it was unknown or poorly known as yet. In this first paper we present our results of the mean longitudinal magnetic field measurements in 136 stars. Our sample consists of 105 Ap and Bp stars, two PGa stars, 17 HgMn stars, three normal stars, and nine SPB stars. A magnetic field was for the first time detected in 57 Ap and Bp stars, in four HgMn stars, one PGa star, one normal B-type star and four SPB stars.Comment: 9 pages, 2 figures, 2 tables, to appear in AN 327, 28

    Searching for a link between the presence of chemical spots on the surface of HgMn stars and their weak magnetic fields

    Full text link
    We present the results of mapping the HgMn star AR Aur using the Doppler Imaging technique for several elements and discuss the obtained distributions in the framework of a magnetic field topology.Comment: 2 pages, 1 figure, to appear in Proceedings of IAU Symposium 259 "Cosmic Magnetic Fields: from Planets, to Stars and Galaxies", Tenerife, Spain, November 3-7, 200

    Characterising the magnetic fields of the Herbig Ae/Be stars HD97048, HD150193, HD176386, and MWC480

    Full text link
    Our knowledge of the presence and the role of magnetic fields in intermediate-mass pre-main-sequence stars remains very poor. We present the magnetic properties of four Herbig Ae/Be stars that have not been previously studied in detail. Our results for the three Herbig Ae/Be stars HD97048, HD150193, and HD176386 are based on multi-epoch low-resolution spectra obtained in spectropolarimetric mode with FORS2 mounted on the VLT. New high-resolution polarimetric spectra were obtained for MWC480 with the SOFIN spectrograph installed at the Nordic Optical Telescope. We discuss 41 FORS2 low-resolution observations of the Herbig Ae/Be stars HD97048, HD150193, and HD176386 and determine their rotational periods. Using stellar fundamental parameters and the longitudinal magnetic field phase curves, we place constraints on the magnetic field geometry. Three high-resolution circularly polarised SOFIN spectra obtained for MWC480 were measured using the moment technique where wavelength shifts between right- and left-hand side circularly polarised spectra are interpreted in terms of a longitudinal magnetic field . Our search for periodicities resulted in P=0.693d for HD97048, P=1.317d for HD150193, and P=0.899d for HD176386. The magnetic field geometry can likely be described by a centred dipole with a polar magnetic field strength B_d of several hundred Gauss. The longitudinal magnetic-field measurements of MWC480 reveal the presence of a strong kG field, which was undetected in our previous low-resolution polarimetric observations with FORS1. A weak magnetic field was detected in the circumstellar components of the Ca II H&K lines and the Na I D lines, indicating a complex interaction between the stellar magnetic field and the circumstellar environment.Comment: 8 pages, 9 figures, 5 tables, accepted for publication in A&

    Dynamical evolution of titanium, strontium, and yttrium spots on the surface of the HgMn star HD 11753

    Get PDF
    Aims. We gathered about 100 high-resolution spectra of three typical HgMn (mercury-manganese) stars, HD 11753, HD 53244, and HD 221507, to search for slowly pulsating B-like pulsations and surface inhomogeneous distribution of various chemical elements. Methods. Classical frequency analysis methods were used to detect line profile variability and to determine the variation period. Doppler imaging reconstruction was performed to obtain abundance maps of chemical elements on the stellar surface. Results. For HD 11753, which is the star with the most pronounced variability, distinct spectral line profile changes were detected for Ti, Sr, Y, Zr, and Hg, whereas for HD 53244 and HD 221507 the most variable line profiles belong to the elements Hg and Y, respectively. We derived rotation periods for all three stars from the variations of radial velocities and equivalent widths of spectral lines belonging to inhomogeneously distributed elements: P_rot (HD 11753)=9.54 d, P_rot (HD 53244)=6.16 d, and P_rot (HD 221507)=1.93 d. For HD 11753 the Doppler imaging technique was applied to derive the distribution of the most variable elements Ti, Sr, and Y using two datasets separated by ~65 days. Results of Doppler imaging reconstruction revealed noticeable changes in the surface distributions of TiII, SrII, and YII between the datasets, indicating the hitherto not well understood physical processes in stars with radiative envelopes that cause a rather fast dynamical chemical spot evolution.Comment: Accepted for publication in Astronomy and Astrophysics, 6 pages, 9 figures, 2 tables

    Recent studies of magnetic fields in Herbig Ae/Be stars

    Full text link
    New determinations of the mean longitudinal magnetic field for several Herbig Ae/Be stars are presented. The longitudinal magnetic field measurements of MWC 480 reveal the presence of a strong kG field, which was undetected in our previous low‐resolution polarimetric observations with FORS 1. The magnetic field geometries of Herbig Ae/Be stars studied with spectropolarimetric time series can likely be described by centred dipoles with polar magnetic field strengths of several hundred Gauss. A number of Herbig Ae/Be stars with detected magnetic fields were recently observed with X‐shooter in the visible and near‐IR as well as with the high‐resolution near‐IR spectrograph CRIRES. These observations are of great importance to understand the relation between the magnetic field topology and the physics of accretion flow and accretion disk gas emission (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89448/1/1022_ftp.pd

    The narrow, inner CO ring around the magnetic Herbig Ae star, HD 101412

    Full text link
    We describe and model emission lines in the first overtone band of CO in the magnetic Herbig Ae star HD 101412. High-resolution CRIRES spectra reveal unusually sharp features which suggest the emission is formed in a thin disk centered at 1 AU with a width 0.32 AU or less. A wider disk will not fit the observations. Previous observations have reached similar conclusions, but the crispness of the new material brings the emitting region into sharp focus.Comment: Accepted as Astronomy and Astrophysics Letter; 4 pages, 5 figure

    Magnetic fields in O-type stars measured with FORS1 at the VLT

    Full text link
    The presence of magnetic fields in O-type stars has been suspected for a long time. The discovery of such fields would explain a wide range of well documented enigmatic phenomena in massive stars, in particular cyclical wind variability, Halpha emission variations, chemical peculiarity, narrow X-ray emission lines and non-thermal radio/X-ray emission. Here we present the results of our studies of magnetic fields in O-type stars, carried out over the last years.Comment: 2 pages, 1 figure, to appear in Proceedings of IAU Symposium 259 "Cosmic Magnetic Fields: from Planets, to Stars and Galaxies", Tenerife, Spain, November 3-7, 200

    Discovery of magnetic fields in three He variable Bp stars with He and Si spots

    Get PDF
    It is essential for the understanding of stellar structure models of high mass stars to explain why constant stars, non-pulsating chemically peculiar hot Bp stars and pulsating stars co-exist in the slowly pulsating B stars and beta Cephei instability strips. We have conducted a search for magnetic fields in the four Bp stars HD55522, HD105382, HD131120, and HD138769 which previously have been wrongly identified as slowly pulsating B stars. A recent study of these stars using the Doppler Imaging technique revealed that the elements He and Si are inhomogeneously distributed on the stellar surface, causing the periodic variability. Using FORS1 in spectropolarimetric mode at the VLT, we have acquired circular polarisation spectra to test the presence of a magnetic field in these stars. A variable magnetic field is clearly detected in HD55522 and HD105382, but no evidence for the existence of a magnetic field was found in HD131120. The presence of a magnetic field in HD138769 is suggested by one measurement at 3 sigma level. We discuss the occurence of magnetic B stars among the confirmed pulsating B stars and find strong magnetic fields of order kG and oscillations to be mutually exclusive.Comment: 5 pages, 3 figures, 2 tables, accepted for publication in A

    Is the Wind of the Galactic Oe Star HD 155806 Magnetically Confined?

    Full text link
    Spectropolarimetric observations of HD 155806 - the hottest Galactic Oe star - were obtained with CFHT/ESPaDOnS to test the hypothesis that disk signatures in its spectrum are due to magnetic channeling and confinement of its stellar wind. We did not detect a dipole field of sufficient strength to confine the wind, and could not confirm previous reports of a magnetic detection. It appears that stellar magnetism is not responsible for producing the disk of HD 155806.Comment: 2 pages, 1 figure; to appear in the proceedings of IAU Symposium 27
    corecore