5 research outputs found

    Ebola Virus’s Glycoproteins and Entry Mechanism

    Get PDF
    Ebola virus glycoprotein (GP) is the only protein that is expressed on the surface of the virus. The GP proteins play critical roles in the entry of virus into cell and in the evasion of the immune system. The GP gene transcript to membrane GP is constituted of two subunits GP1 and GP2, and the secretory GP (sGP). The main function of GP1/2 is to attach virus to target cell’s membrane, whereas sGP has multiple functions on Ebola pathogenesis, such as inactivate neutrophils through CD16b causing lymphocyte apoptosis and vascular dysregulation. There are many studies that focused on better understanding the GP mechanism and aim at developing new antibodies and drugs such as VSV-EBOV, cAd3-EBO Z, rVSVN4CT1 VesiculoVax, ‘C-peptide’ based on the GP2 C-heptad repeat region (CHR) targeted to endosomes (Tat-Ebo) and MBX2270. In this chapter, we discuss the Ebola viral glycoproteins, genomic organization, synthesis, and their roles and functions. On the other hand, we treat the mechanisms of pathogenicity associated with Ebola GPs

    Roles of VP35, VP40 and VP24 Proteins of Ebola Virus in Pathogenic and Replication Mechanisms

    Get PDF
    Ebola epidemic is a fatal disease due to Ebola virus belonging to Filoviridae; currently the viral evolution caused more than 50% of death worldwide. Among the eight proteins of ZEBOV, there are four structural proteins VP35, VP40, VP24, and NP, which have important functions in the intercellular pathogenic mechanisms. The multi‐functionality of Ebola\u27s viral proteins allows the virus to reduce its protein number to ensure its proper functioning and keeping the compact structure of the virus. Therefore, the aim of this chapter is to study the mechanism of replication and the roles of VP30, VP35, NP, and L in this process. We provide as well to highlight the influence of the virus on the immune system and on the VP24

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Current situation, genetic relationship and control measures of infectious bronchitis virus variants circulating in African regions

    Get PDF
    Infectious bronchitis virus (IBV) is a major viral pathogen of commercial poultry, affecting chickens of all ages and causing major economic losses in poultry industry worldwide. Frequent points of mutations and recombination events in the S1 gene region, result in the emergence of new IBVs variants circulating in the form of several serotypes/genotypes that can be partially or poorly neutralized by current vaccines. IBV is well studied worldwide, nevertheless in African countries epidemiological and scientific data are poor and not updated. This review aims to give a current overview of IBV situation, to establish evolutionary relationship between the African variants and to list some of the potential measures to control IBV in Africa. Three S1 gene hypervariable regions were studied and compared to the reference genotypes/serotypes that found emerging in African regions. This comparison was based on phylogenetic trees, nucleotide and amino-acid sequence analysis. It clearly appears that IBV variants reported in Africa, display a low genetic relationship between them and with the majority of the reference strains emerging in neighboring countries, except the case of variants from Libya and Egypt that show a high relatedness. Also the Massachusetts serotypes were the most prevalent co-circulating with both serotypes, Italy02 type in Morocco and Qx-like genotype in South part of the African continent. In order to control the IBV variants in African regions, an efficient vaccination strategy program should be implemented
    corecore