235 research outputs found

    An Optimized and Scalable Eigensolver for Sequences of Eigenvalue Problems

    Get PDF
    In many scientific applications the solution of non-linear differential equations are obtained through the set-up and solution of a number of successive eigenproblems. These eigenproblems can be regarded as a sequence whenever the solution of one problem fosters the initialization of the next. In addition, in some eigenproblem sequences there is a connection between the solutions of adjacent eigenproblems. Whenever it is possible to unravel the existence of such a connection, the eigenproblem sequence is said to be correlated. When facing with a sequence of correlated eigenproblems the current strategy amounts to solving each eigenproblem in isolation. We propose a alternative approach which exploits such correlation through the use of an eigensolver based on subspace iteration and accelerated with Chebyshev polynomials (ChFSI). The resulting eigensolver is optimized by minimizing the number of matrix-vector multiplications and parallelized using the Elemental library framework. Numerical results show that ChFSI achieves excellent scalability and is competitive with current dense linear algebra parallel eigensolvers.Comment: 23 Pages, 6 figures. First revision of an invited submission to special issue of Concurrency and Computation: Practice and Experienc

    Spin-caloric transport properties of cobalt nanostructures: spin disorder effects from first principles

    Get PDF
    The fundamental aspects of spin-dependent transport processes and their interplay with temperature gradients, as given by the spin Seebeck coefficient, are still largely unexplored and a multitude of contributing factors must be considered. We used density functional theory together with a Monte-Carlo-based statistical method to simulate simple nanostructures, such as Co nanowires and films embedded in a Cu host or in vacuum, and investigated the influence of spin-disorder scattering on electron transport at elevated temperatures. While we show that the spin-dependent scattering of electrons due to temperature induced disorder of the local magnetic moments contributes significantly to the resistance, thermoelectric and spin-caloric transport coefficients, we also conclude that the actual magnitude of these effects cannot be predicted, quantitatively or qualitatively, without such detailed calculations.Comment: 10 pages, 6 figure

    Functionalized Bismuth Films: Giant Gap Quantum Spin Hall and Valley-Polarized Quantum Anomalous Hall States

    Get PDF
    The search for new large band gap quantum spin Hall (QSH) and quantum anomalous Hall (QAH) insulators is critical for their realistic applications at room temperature. Here we predict, based on first principles calculations, that the band gap of QSH and QAH states can be as large as 1.01 eV and 0.35 eV in an H-decorated Bi(111) film. The origin of this giant band gap lies both in the large spin-orbit interaction of Bi and the H-mediated exceptional electronic and structural properties. Moreover, we find that the QAH state also possesses the properties of quantum valley Hall state, thus intrinsically realising the so-called valley-polarized QAH effect. We further investigate the realization of large gap QSH and QAH states in an H-decorated Bi(\={1}10) film and X-decorated (X=F, Cl, Br, and I) Bi(111) films.Comment: submitted to Physical Reveiw Letters on 25th of September 201

    Quantum well states and amplified spin-dependent Friedel oscillations in thin films

    Full text link
    Electrons mediate many of the interactions between atoms in a solid. Their propagation in a material determines its thermal, electrical, optical, magnetic and transport properties. Therefore, the constant energy contours characterizing the electrons, in particular the Fermi surface, have a prime impact on the behavior of materials. If anisotropic, the contours induce strong directional dependence at the nanoscale in the Friedel oscillations surrounding impurities. Here we report on giant anisotropic charge density oscillations focused along specific directions with strong spin-filtering after scattering at an oxygen impurity embedded in the surface of a ferromagnetic thin film of Fe grown on W(001). Utilizing density functional theory, we demonstrate that by changing the thickness of the Fe films, we control quantum well states confined to two dimensions that manifest as multiple flat energy contours, impinging and tuning the strength of the induced charge oscillations which allow to detect the oxygen impurity at large distances (\approx 50nm).Comment: This paper has an explanatory supplemen

    Solution to the modified Helmholtz equation for arbitrary periodic charge densities

    Full text link
    We present a general method for solving the modified Helmholtz equation without shape approximation for an arbitrary periodic charge distribution, whose solution is known as the Yukawa potential or the screened Coulomb potential. The method is an extension of Weinert's pseudo-charge method [M. Weinert, J. Math. Phys. 22, 2433 (1981)] for solving the Poisson equation for the same class of charge density distributions. The inherent differences between the Poisson and the modified Helmholtz equation are in their respective radial solutions. These are polynomial functions, for the Poisson equation, and modified spherical Bessel functions, for the modified Helmholtz equation. This leads to a definition of a modified pseudo-charge density and modified multipole moments. We have shown that Weinert's convergence analysis of an absolutely and uniformly convergent Fourier series of the pseudo-charge density is transferred to the modified pseudo-charge density. We conclude by illustrating the algorithmic changes necessary to turn an available implementation of the Poisson solver into a solver for the modified Helmholtz equation.Comment: submitted to the Journal of Mathematical Physic

    Mixed topological semimetals driven by orbital complexity in two-dimensional ferromagnets

    Full text link
    The concepts of Weyl fermions and topological semimetals emerging in three-dimensional momentum space are extensively explored owing to the vast variety of exotic properties that they give rise to. On the other hand, very little is known about semimetallic states emerging in two-dimensional magnetic materials, which present the foundation for both present and future information technology. Here, we demonstrate that including the magnetization direction into the topological analysis allows for a natural classification of topological semimetallic states that manifest in two-dimensional ferromagnets as a result of the interplay between spin-orbit and exchange interactions. We explore the emergence and stability of such mixed topological semimetals in realistic materials, and point out the perspectives of mixed topological states for current-induced orbital magnetism and current-induced domain wall motion. Our findings pave the way to understanding, engineering and utilizing topological semimetallic states in two-dimensional spin-orbit ferromagnets

    Phonons from Density-Functional Perturbation Theory using the All-Electron Full-Potential Linearized Augmented Plane-Wave Method FLEUR

    Full text link
    Phonons are quantized vibrations of a crystal lattice that play a crucial role in understanding many properties of solids. Density functional theory (DFT) provides a state-of-the-art computational approach to lattice vibrations from first-principles. We present a successful software implementation for calculating phonons in the harmonic approximation, employing density-functional perturbation theory (DFPT) within the framework of the full-potential linearized augmented plane-wave (FLAPW) method as implemented in the electronic structure package FLEUR. The implementation, which involves the Sternheimer equation for the linear response of the wave function, charge density, and potential with respect to infinitesimal atomic displacements, as well as the setup of the dynamical matrix, is presented and the specifics due to the muffin-tin sphere centered LAPW basis-set and the all-electron nature are discussed. As a test, we calculate the phonon dispersion of several solids including an insulator, a semiconductor as well as several metals. The latter are comprised of magnetic, simple, and transition metals. The results are validated on the basis of phonon dispersions calculated using the finite displacement approach in conjunction with the FLEUR code and the phonopy package, as well as by some experimental results. An excellent agreement is obtained.Comment: 44 pages, 6 figure
    corecore