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Spin-caloric transport properties of cobalt nanostructures: Spin disorder effects from first principles
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The fundamental aspects of spin-dependent transport processes and their interplay with temperature gradients,
as given by the spin Seebeck coefficient, are still largely unexplored and a multitude of contributing factors
must be considered. We used density functional theory together with a Monte-Carlo-based statistical method
to simulate simple nanostructures, such as Co nanowires and films embedded in a Cu host or in vacuum, and
investigated the influence of spin disorder scattering on electron transport at elevated temperatures. While we
show that the spin-dependent scattering of electrons due to temperature-induced disorder of the local magnetic
moments contributes significantly to the resistance, thermoelectric, and spin-caloric transport coefficients, we
also conclude that the actual magnitude of these effects cannot be predicted, quantitatively or qualitatively,

without such detailed calculations.
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I. INTRODUCTION

The recent discovery of the spin Seebeck effect [1] triggered
a broad discussion about its microscopic origin and correct
interpretation of the measured data (spin Seebeck versus spin-
dependent Seebeck effect) [2—10] and extended the field of spin
caloritronics [11], which investigates the coupling between
electrical, spin, and heat transport. Possible technological im-
portance was suggested for the spin Seebeck effect in thermally
driven position sensing [12,13]. Furthermore, an enhanced
Peltier effect reported in submicron-sized metallic junc-
tions could lead to applications in electronics micro-cooling
[14-17]. Ferromagnetic materials subject to a temperature
gradient experience, in addition to a heat current (thermal
conductivity) and a charge current (thermoelectric effect), an
induced spin current (spin-caloric effect). In metals we expect
a large part of the spin current to arise from spin-polarized
electron propagation due to generally different conductivity for
the majority and minority spin channels, while other possible
effects, e.g., spin transport due to magnons or even phonons,
are dominant in insulators.

Theoretical and computational investigation is an essen-
tial part of understanding spin-caloric phenomena due to a
nontrivial connection between the microscopic character of
relevant materials and their functionality. The asymmetry
of the electronic transmission coefficient as a function of
energy around the Fermi level (Ep) enters the expressions
for the thermoelectric effects, making quantitative or even
semiquantitative predictions next to impossible on a simple
model level. Given the complexity of the electronic structure,
numerical calculations are therefore inevitable.

An important contribution to the electron-transport phe-
nomena at high temperatures is the formation of a spin-
disordered state due to local-moment fluctuations in the mag-
netic material. This comes on top of the phonon contribution
at high temperatures and the spin-orbit contribution to spin
mixing that occurs at all temperatures [18,19]. The fluctuations
induce spin-conserving and spin-flip scattering and clearly
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contribute to the temperature-dependent transport phenomena.
For example, they induce the well-known spin disorder
resistivity that has been experimentally investigated in the
past in ferromagnetic materials [20,21] and was successfully
modeled with ab initio techniques [22-26]. It is obvious that
spin fluctuations must also contribute to thermoelectric and
spin-caloric phenomena. However, this effect has not been
investigated so far. In the present paper we address this
problematic by means of density functional calculations and
Monte Carlo simulations and arrive at the conclusion that
the impact of temperature-induced spin disorder is strong at
temperatures where the magnetization reduction is significant.
We also find that there is no universal correlation between the
temperature-dependent magnetization and the thermoelectric
and spin-caloric coupling; i.e., it has to be examined separately
for each material and microscopic structure and at each
temperature, due to the delicate modulation of the electron-
scattering as a function of energy around E and as a function
of temperature.

We focus on magnetic nanostructures, particularly on
Co nanocolumns embedded between Cu leads, motivated
by the miniaturization of spintronics devices and by recent
suggestions that nanostructured magnetic materials (e.g., in
the “Konbu” phase) can lead to extraordinary thermoelectric
effects due to quantum confinement [16,17]. In addition,
we approach the bulk limit by considering the transport
through a thin layer formed by several atomic layers of
Co. The electronic structure of the studied systems is calcu-
lated within the multiple scattering screened Korringa-Kohn-
Rostoker Green’s function (KKR-GF) framework using the
full-potential formalism [27]. The Monte Carlo methodology
is then used to simulate the effect of temperature on the
magnetic configurations within a Heisenberg model with
the exchange coupling parameters calculated according to
Liechtenstein et al. [28]. The transmission probability through
the spin-disordered magnetic structures is obtained using
the Landauer-Bittiker approach for the ballistic transport
within the KKR-GF framework [29], extended in this work
to account for the noncollinear magnetic effects similar to
work in Ref. [30], thus providing individual spin-preserving
and spin-flip contributions to the transmission probability. The
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FIG. 1. (Color online) General setup of our model system with
atoms placed on the fcc crystal lattice. The direction of current is
parallel with the z axis ([001] direction). Cu and Co atoms are shown
as spheres and arrows, respectively. The transmission probability is
evaluated for pairs of atomic layers (indicated by vertical lines) placed
far enough from the Cu/Co interface.

electrical conductance and Seebeck coefficients are finally
calculated from the transport coefficients. We note that while
the term “spin-dependent Seebeck coefficient” is reserved
for the case of independent spin effects such as transport
phenomena in collinear magnetic systems, we resort to the
generic term “spin Seebeck coefficient” due to a strong mixing
of the spin channels [11].

In the following, we describe our model systems and briefly
summarize methodologies used in this work and corresponding
computational details (Sec. II). Results are presented and
discussed in Sec. III and our main conclusions are given in
Sec. IV.

II. METHODOLOGY
A. Geometric structure

The geometry that we choose is intended to serve as a
generic model of Co nanostructures embedded, on the one
hand, between free-electron-metal leads, and on the other hand
surrounded in the lateral direction either by a free-electron
metal or by vacuum or an insulating material modeled here
by vacuum. We choose a few different geometries to see
whether the effect of spin disorder on the transport coefficients
in the nanoscale is significantly affected by the magnetic
nanostructure shape and size and by the surrounding medium
(metallic or insulating).

The basic setup of our model systems is depicted in Fig. 1.
The left and right semi-infinite leads consist of the fcc crystal
lattice of Cu atoms with the experimental lattice constant
e = 3.62 A and with the interface to the scattering region
orthogonal to the z axis ([001] direction). The region between
the leads contains 8 atomic layers of either Co atoms forming
a thin layer or Co atoms in a shape of a thin wire in various
structural configurations surrounded by Cu or vacuum (see
Fig. 2). The sites in the scattering region epitaxially follow
the perfect fcc lattice of the leads, which is an acceptable
approximation due to the small size of this region. Since our
focus is to study the effect of spin disorder, the atoms are kept
at their ideal unrelaxed positions.

A supercell approach with two-dimensional periodicity
within the xy plane is used to model the real-space spin
disorder in a thin layer of Co atoms [Fig. 2(c)], as well as
for all wirelike Co structures [Figs. 2(a), 2(b), and 2(d)-2(f)],
imposing a separation of at least 2aj, to any atom in their
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FIG. 2. (Color online) Top panel: Cobalt [blue (dark) spheres]
nanostructures sandwiched between Cu leads [yellow and red (bright)
spheres] used in this study: (c) thin Co layer “TL” consisting of 8
monolayers; (a), (f) monoatomic wires “W11(Cu)” and “W11(Va)”
having 1 Co atom in all layers; (b), (¢) biatomic wires “W22(Cu)”
and “W22(Va)” having 2 Co atoms in all layers; (d) wire “W54(Va)”
with alternating 5 and 4 Co atoms. The (Cu) and (Va) indicate
the type of embedding (copper and vacuum, respectively) of the
Co nanostructure. Periodic boundaries are indicated by solid lines.
Crystal structures were plotted using VESTA [40]. Bottom panel:
Setup of the nanowires geometry for the (g) W11, (h) W22, and
(i) W54 nanowires: Co sites (red filled circle), their first nearest
neighbor (green thick line circle), second nearest neighbor (blue
medium thick line circle), and embedding sites (black thin line
circle) are shown in the two adjacent layers (large and small circles,
respectively). The 3 x 3 and 4 x 4 supercell is indicated by solid and
dashed lines, respectively.

periodic images. The transmission probability between the left
and right lead is evaluated for pairs of Cu atomic layers placed
sufficiently away from the interface with the magnetic region
so that the Cu potentials are bulklike. The supercell approach
was successfully used in the past to model the disorder-driven
change in various material properties, e.g., already mentioned
spin disorder resistivity [22,24-26], or the effect of frozen
thermal lattice disorder on the Gilbert damping and spin-
flip diffusion length [31,32]. While the computationally less
expensive disordered local moment method in the coherent
potential approximation also allows one to evaluate the effect
of spin disorder, the lack of short-range order above the critical
temperature results in a complete disorder saturation which
generally leads to sizable differences in the results [23].

B. Electronic structure

The KKR-GF method using the full-potential formal-
ism [27,33-35] and local density approximation [36] to
the exchange-correlation energy functional is employed to
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calculate the electronic structure of our model systems,
for which the angular moment expansion is truncated after
Imax = 3. We calculate the electronic structure of the ground
state in a multiple-step procedure.

In the first step we calculate the self-consistent density
and potential of a “slab” system Cu(7)-{Cu/Co/Va}(8)-
Cu(7) with one atom per layer. Here, the “scattering region”
{Cu/Co/Va}(8) consists of eight layers of either Co atoms, or
Cu atoms or vacuum, depending on the system. This region is
sandwiched between two Cu(7) regions, consisting of seven
atomic layers of Cu, and the whole slab is embedded in vacuum
modeled by three layers of empty spheres on each side of the
slab. A well-converged density was reached using a 36 x 36
k-point mesh for the integration in the surface Brillouin zone
(SBZ) and a smearing temperature of 800 K.

In a second step, we replace the outermost part of the
slab, i.e., the three outermost Cu atomic layers and the outer
vacuum, by half-infinite Cu leads. We use the potential of the
central atomic layer of the Cu(7) region that is bulklike to a
very good approximation to construct the self-energy induced
by the half-infinite region by applying the decimation tech-
nique [37,38] adapted to the KKR-GF method [27,39]. In other
words, we attach the half-infinite leads (- - - Cu- and -Cu- - -)
on the Cu(4)-{Cu/Co/Va}(8)-Cu(4) “central” part of the
slab.

The third and final step corresponds to the construction
of supercell potentials. At this point, the - - - Cu-Cu(4)-Co(8)-
Cu(4)-Cu- - - system forms a base for the model system of the
thin Co layer (TL). A 3 x 3 supercell [shown in Fig. 2(c)]
is constructed by replicating the individual site potentials. To
obtain the electronic structure of all other systems (nanowires),
the embedded Co wire and the nearest neighbors were further
treated self-consistently by the impurity Green’s function
method [27,41]. Here, we use as a reference the Cu(4)-
Cu(8)-Cu(4) system (Cu bulk) for the nanowires embedded
in Cu [Figs. 2(a) and 2(b)] or the Cu(4)-Va(8)-Cu(4) system
for the nanowires embedded in vacuum [Figs. 2(d)-2(f)].
The structure of the nanowires is shown from a side view
in Figs. 2(a), 2(b), and 2(d)-2(f) and from a top view in
Figs. 2(g)-2(i). Inclusion of the second nearest neighbors in
the impurity cluster led to negligible differences of occupation
(< 0.006 electrons) and magnetic moments (< 0.005 wp)
of the cobalt atoms and their nearest neighbor sites. The
occupation of second nearest neighbors did not differ more
than 0.011 electrons from the unperturbed reference site in
their respective layer. Finally, a supercell in the xy plane, i.e.,
perpendicular to the lead/wire interface, was formed by the
converged potentials of the impurity cluster sites embedded
in the respective reference potentials of Cu or vacuum. The
nanowires W11(Cu/Va) and W22(Cu/Va) were modeled in
the 3 x 3 supercell, whereas the W54(Va) wire, having a
larger cross section, was modeled in the 4 x 4 supercell (see
Fig. 2).

C. Spin disorder

Our model of the spin disorder is based on adopting the
moment directions as they are given by a classical Heisenberg
model at nonzero temperature. In this spirit we set up a

PHYSICAL REVIEW B 89, 134417 (2014)

Heisenberg Hamiltonian

H=-YJ;M M, (1)
ij

where M; and M; are unit vectors pointing in the direction
of the moments at sites i and j, respectively, while J;;
are the exchange parameters extracted from the ground-state
electronic structure. Based on the formalism of Liechtenstein
et al. [28], we calculate the exchange coupling parameters J;;
between the Co atoms.

The thermal fluctuations of the magnetic moments of Co
atoms are modeled by the Monte Carlo (MC) approach using
the Metropolis algorithm [42]. As a random number generator
we used the Mersenne twister [43]. Since the statistics of
quantities evaluated from the spin configurations strongly
depends on the temperature and character of a particular
system, we empirically determine the number of required MC
configurations N by a simple criterion that accounts for the
fluctuation amplitude,

Neont = No <m12\/[c> - (mMC>2/<m0)v (2)

where myc is the magnitude of the system magnetization at
a given MC snapshot, (myc) its average over MC configura-
tions, (mﬁ,lc) the MC average of mfvlc, and (m) the magnitude
of the ground-state magnetization in the KKR-GF calculation.
The empirical constant Ny was set to 5000 yielding typical
Ncont & 800 around the crossover temperature where the
fluctuations are most pronounced. The spin-up and spin-down
directions in the electronic structure derived quantities at each
MC snapshot are given with respect to the global magnetization
axis of the same MC snapshot and averaged at the end over
all snapshots. Besides monitoring the evolution of average
magnetic moment and magnetic susceptibility as a function of
temperature, we calculate the correlation function Cy between
moments of the Nth nearest neighbor layer pairs in the [001]
direction; i.e., Najy /2 is the distance between the two layers.
In the calculation of Cy we include correlations between
moments at atomic sites whose distance, when projected onto
the xy plane, does not exceed 0.5 ay,.. Using indices a and b
for the in-plane position and c, d for the layers, we define

N Nh Z Z abc * abd (3)

d e<d
where N.; is the number of all layer pairs with distance
Nay/2, and N, and N, are the numbers of magnetic sites
along the x and y directions of the MC supercell.

Cn(T) =

D. Electron transport

In order to evaluate the transmission probability matrix
using the formalism of noncollinear magnetism, a code
was developed interfacing the existing KKR-GF [27] and
transport [29] programs, which were modified accordingly
to treat the noncollinear magnetic states. We make implicit
use of the adiabatic approximation, assuming that the electron
traverses the nanostructure or junction at a faster timescale
compared to the precession of localized moments [44,45].
Our approach amounts to a rotation of the ground-state
magnetic part of the site-dependent potentials in the direction
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prescribed by the MC snapshot. This is done without a further
self-consistent calculation of the noncollinear state, as such a
calculation requires many self-consistent steps while adjusting
the necessary constraining fields, leading to an increase of
computational time by one to two orders of magnitude.
The resulting absolute values of magnetic moments differ
only marginally from their respective values at the ground
state, confirming the dominance of the intra-atomic exchange
interaction over the inter-atomic ones. The details about
our implementation of the calculation of transport properties
within the noncollinear formalism are given in the Appendix.

The transport coefficients L,, were evaluated by a numerical
integration of the transmission probability I'(kj,E) (see
Appendix) over a set of discrete values of the momentum
k; and energy E as

L, = —/dE UrE) EF)"/ Ak, Tk E). (4)
oE SBZ

Here, fr(E)= [exp(EkjF)Jr 117" is the Fermi-Dirac dis-
tribution function with 7' corresponding to the temperature
of the MC simulation, Ef is the Fermi energy, and dk is
the integration element in the SBZ. For each temperature
and system, ['(E) = [, dkI'(k|, E) was calculated on an
individual grid of 21 equidistant £ points in the range from
—10 kgT to +10 kgT as the (E — Ep)"0 fr/0E factors
become negligible at £10 kg 7. We tested a four times denser
E grid for the TL system and found no significant change
in the results. Finally we averaged over the noncollinear MC
configurations at a given temperature obtaining (L, ) 7.

The transport quantities, namely, electrical conductance G,
electrical resistance R, charge Seebeck coefficient Sc, and
spin Seebeck coefficient Sg, are finally calculated using the
well-known formulas

2

G (T) = %(Lg"’)T, 5)
G=Y) G, ©)
R= 7

- Es ( )

_ Zaa’ <L(IIU,>T

eT Y .o (L),
sg= DA = L= LDy
el Zao’ <L0 >T

Sc = , ®)

III. RESULTS
A. Electronic structure of the ground state

Before we proceed to the analysis of the spin disorder
effect on the transport properties, we want to point out the
characteristic features of the studied systems, as well as their
similarities and/or differences. For that purpose, the electron
density of states (DOS) of selected systems is depicted in
Fig. 3(a). For brevity, we refer to the majority and minority
spin channel as 41 and |, respectively, which are always taken
with respect to the global reference frame determined by the
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FIG. 3. (Color online) (a) The electron density of states (DOS)
for majority and minority spin channel (upper and reverse scale
lower part of the graphs, respectively) averaged over four Cu layers
adjacent to the scattering region (circles) and all Co atoms in
the system (squares). Data corresponding to the spin-ordered and
spin-disordered case (calculated at MC simulation 7 = 1100 K) is
shown as open and filled symbols, respectively. (b) Transmission
probability I' divided by the number of atoms (V) in the cross section
of the scattering region. Open and filled symbols correspond to the
spin-ordered and average spin-disordered case, respectively. In the
spin-disordered case, upper and reverse scale lower parts of the graphs
depict " =T™M + (TN 4+ TH)/2and TV = TH + (TN + TV /2,
respectively. The MC simulation temperature of the spin-disordered
data (left to right) corresponds to 1100, 300, 400, and 300 K. The
color coding of data sets in (b) is consistent with the system labels in
Fig. 2.

direction of the effective moment of the system, and we use the
abbreviations for the model systems as introduced in Fig. 2.
For all systems in the ordered magnetic state, the DOS'(EF)
of Co atoms (open squares) as well as the DOS™/¥(Ef) of
Cu atoms (open circles) is rather low due to formally filled d
orbitals. In the TL system, partially occupied minority spin d
orbitals of Co atoms yields the DOS*(EF) about three times
larger than the DOS'(EE) (not shown). The one-dimensional
character of the nanowires is expected to manifest itself via
Van Hove singularity features in the DOS. The DOS¥ at around
Er is indeed raised for all nanowires, but a pronounced peak
can be seen only in the W11(Va) system. We note that a strong
asymmetry of the DOS around Ep, as seen for W11(Va), was
suggested as an indicator of a large Seebeck coefficient [17].
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However, as will be shown below, there is no clear connection
between the DOS and the transport properties of the systems
in the present study.

In Fig. 3(b), we show the transmission probability I" as a
function of the energy E around the Fermi level, normalized
by the number of atoms (N,) in the cross section of the
scattering region [Ny is 9 for the W11(Cu), W22(Cu), and
TL systems and 4, 2, and 1 for the W54(Va), W22(Va), and
W11(Va) systems, respectively]. The transmission probability
I't at Eg is in the spin-ordered state (open symbols) slightly
smaller than 1 and a slowly growing function of E consistently
for all systems. The I'V exhibits much richer variation of its
character. For example, despite the similarity of the DOS
between W54(Va) and W22(Va), the corresponding Y as
a function of E is very different. A discussion of the spin
disorder effect on the DOS and I"' will follow later, together
with an analysis of individual transport properties.

B. Spin disorder

As outlined in the previous section, the spin disorder is
determined by the fluctuations of the magnetic moments
obtained from snapshots of MC simulations of the classical
Heisenberg Hamiltonian. The exchange coupling parameters
Jij between the Co atoms were calculated for all pairs for
which the distance r;; < 3a,. We verified that a further
increase of r;; did not affect results. The J;; parameters
between the periodic images of the nanowires due to the
in-plane periodicity were neglected, as their values were at
least 3 orders of magnitude smaller than the nearest neighbor
exchange coupling. Figure 4 shows the absolute value of the
leading J;; terms in logarithmic scale, showing that the nearest
and next-nearest neighbor interactions are dominant.

The magnetization and susceptibility as functions of the MC
simulation temperature are shown in Fig. 5(a). Since there is
no real critical temperature in nanostructures, we define T as
a crossover temperature at the magnetic susceptibility peak.
While the TL system exhibits critical-like behavior at around

W11(Cu)
W22(Cu)
TLO
W54(Va) O
W22(Va) &
W1l(Va) v

R <

OOD

J;/' (mRy)
<TOoD

)
O OXDP
04 ¢

0 1 2 3
rlj (alal)
FIG. 4. (Color online) Absolute value of the leading exchange
coupling parameters J;; in logarithmic scale as a function of the Co

intersite distance r;;. The color coding of data sets is consistent with
the system labels in Fig. 2.
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1100 K (sharp drop of the magnetic moment and divergence
character of the magnetic susceptibility), all nanowires retain
a rather large magnetic moment until very high temperatures,
resembling macrospin character. The reduction of magnetic
moment at high temperatures is less pronounced for the
nanowires with smaller cross section. The divergence character
of their magnetic susceptibility, as a possible indication of
the crossover temperature, is strongly suppressed and the
corresponding peaks are shifted to much lower temperatures.

As we will show later, certain features of the spin disorder
effects on the transport properties could not be correlated
with the position of the susceptibility peak. Therefore, we
explore an alternative sign of the magnetic order loss, the
spatial correlation Cy(T) as defined in Eq. (3). In Fig. 5(b),
the Cn(T) calculated between the moments of the Nth nearest
neighbor layers in the z direction is shown in logarithmic scale
for N = {1,...,7}. The nearest neighbor spatial correlation
C, (thickest line) when seen in linear scale (not shown) has
an evolution with 7 very similar to that of the magnetic
moment. The spatial correlation between farther neighbors
of the different systems exhibits very diverse trends. In the
case of TL, all farther-neighbor Cy>, terms tightly follow
the C; up to T.. Above this temperature, the falloff of C;
and C, is less steep than that of Cy>3. This is consistent
with the presence of short-range magnetic order well above
T. while the long-range order is quickly suppressed. In the
case of nanowires, the Cy tend to quickly deviate from each
other already at low temperatures. The nanowires embedded
in Cu share a similar picture with the TL, exhibiting a fast
decay of Cy>3. The nanowires embedded in vacuum display
a somewhat different trend, with no clear separation in the
falloff of C; and C, with respect to Cy>3. Instructive is
a comparison of the W22(Cu) and W11(Va) nanowires, for
which the susceptibility peaks at around the same temperature.
The C; and C,, however, stay quite large at high 7 in the case
of W11(Va), suggesting well preserved short-range magnetic
order and possibly different character of the spin disorder
effect on the transport properties in comparison with W22(Cu).
Using the spatial correlation, we determine an independent
measure of the long-range magnetic order loss. Especially
for the TL, the crossover point (7. =~ 1100 K) is very well
approximated by using the condition that the C3 value falls
below 0.12 [indicated as dotted vertical and horizontal lines
in Figs. 5(a) and 5(b), respectively]. However, this is not the
case for the nanowire systems, where the difference between
the 7, and a crossover point determined from the falloff of
Cj is quite large. This suggests that the loss of order in the
nanowires is more gradual, resulting in a strong drop of C3 at
higher temperatures than 7.

C. Transport properties

The electrical conductance of the spin-ordered and spin-
disordered states as a function of temperature is shown in
Figs. 5(c) and 5(d), respectively. As can be seen in Fig. 5(c),
the temperature dependence of the electrical conductance
calculated using only the Fermi function smearing for the
ordered magnetic configuration is very weak. Interestingly,
the conductance of both W11(Cu) and W22(Cu) is very
similar to the TL system, although the number of Co atoms
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FIG. 5. (Color online) (a) Monte Carlo (MC) site averages of the Co atoms magnetic moment m (solid line) and magnetic susceptibility
x (dashed line). (b) Spatial correlation Cy of the magnetic moment orientation between Nth nearest neighbor layers in the z direction.
Thick-to-thin lines corresponds to first to seventh nearest neighbors, respectively. Vertical dotted line in (a) indicates temperature for which Cs
drops under 0.12 [dotted line in (b)]. (c) Electrical conductance of the ordered magnetic configuration; the temperature dependence enters via
Fermi function smearing. Triangles pointing up/down correspond to 1 / | spin, respectively. (d) Electrical conductance of the spin-disordered
magnetic configurations calculated by MC method. Triangles pointing up/down and diamonds correspond to 14/ | and average of 1 and
11 of spin matrix elements, respectively. (e) Polarization of the electrical conductance. (f) Total electrical resistance. Position of the vertical
dotted line is equivalent to (a). (g) Charge and (h) spin Seebeck coefficient. In (e)—(h), dashed and solid lines correspond to the spin-ordered
and spin-disordered data, respectively. The color coding of data sets in the individual columns corresponds to the system labels in Fig. 2.

in the supercells containing a nanowire is much lower. On  decreasing thickness of the nanowires embedded in vacuum.

the contrary, the relative magnitude of the conductance via  As expected, the temperature effect on the electrical conduc-
the majority and minority spin channels is reversing with tance via disordered magnetic configurations is significant
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[Fig. 5(d)]. The individual spin matrix elements of the
conductance tend to converge at high temperatures. While the
convergence is rather quick for the TL, it is suppressed as
the cross section of the nanowires decreases. This correlates
with the fact that the © and | channels of the DOS and
transmission probability for the nanowires are not equalized
by the spin disorder even at T ~ 1100 K [shown as filled
symbols in Figs. 3(a) and 3(b)—only W11(Cu)]. The resulting
electrical conductance polarization [Fig. 5(e)] shows that
small variations in the geometry of nanowires can lead to
large differences in the polarization [e.g., negative sign for
W11(Va)]. Furthermore, the spin disorder has, in general,
indeed a significant influence (solid line). Besides strong
suppression of the polarization [W11(Cu), W22(Cu), TL], it
can lead to sign reversal (nanowires embedded in vacuum).

The well-known effect of spin disorder resistivity can
be seen in Fig. 5(f). A characteristic kink in the electrical
resistance of the TL correlates with the crossover point
observed in the MC data. This kink is present also in the
nanowires embedded in copper (although it is not as sharp)
and the resistance saturates above a certain temperature. The
position of the kink (indicated by a vertical dotted line)
correlates rather with the loss of long-range magnetic order
(Cn>3 £ 0.12) than with the peak in magnetic susceptibility
x. The kink is virtually missing in the nanowires embedded
in vacuum where the resistance grows throughout the whole
considered temperature range. Yet, a small change of slope
in R(T) can be identified, which again correlates rather with
the long-range magnetic order loss than with the susceptibility
peak.

While features of electrical conductance can be, for some
simple systems, related to the electronic density of states,
it is next to impossible to find such relation in case of the
Seebeck coefficient, except perhaps in the low-temperature
limit of some model systems. The reason is that the Seebeck
coefficient is a product of two transport coefficients 1/L, and
Ly, where the former may already have not much relation
to the DOS and the latter is resulting from contributions of
the transmission probability I'(E), with maximum weight at
|E — Ep| & 1.5 kgT and significant weight up to as far as
|E — Eg| &~ 5 kgT. Furthermore, while simple rescaling of
I'(E) leads to no change of the Seebeck coefficient and a
(positive or negative) rigid shift of I'(E) clearly leads to a
decrease or increase of the Seebeck coefficient, we do not
find, in general, such trivial effects resulting from the spin
disorder [see Fig. 3(b)].

In Figs. 5(g) and 5(h), we present the results of the
conventional charge (S¢) and spin (Ss) Seebeck coefficient,
respectively. The influence of temperature is obviously non-
trivial, even if only the effect due to the Fermi function
smearing for the ordered spin configuration is considered
(dashed line). Looking first at Sc, a very fast onset can be
seen for W54(Va) and W11(Va), quickly reaching almost its
maximum value already at around or even well below room
temperature. This result could be interpreted in the light of the
hypothesis that a large Seebeck coefficient can be predicted
from a steep DOS(E) slope at Er due to Van Hove singularity
in quantum wires. While this is consistent for the W11(Va)
nanowire, the DOS of the W54(Va) nanowire is very flat
at around Ep. The explanation lies in the character of the
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transmission probability [Fig. 3(b)]. For both systems and
both spin channels the slope of I'(E) at around E¥ is positive
and relatively large leading to a fast growth of Sc(T"). The
resulting difference of the 1 and | slope of I'(Ef) yields
somewhat smaller Ss. A complementary argument showing
the inability of the DOS to reflect the Seebeck coefficient
comes from a comparison of the W54(Va) and W22(Va)
nanowires. Despite a close similarity in the DOS [Fig. 3(a)],
the effective slope of I'V(E) at around Ef is opposite in sign
for these two systems [Fig. 3(b)], which leads to a negligible
Sc and an enhanced Sg at room temperature for the W22(Va)
nanowire [Figs. 5(g) and 5(h)]. The growth of Ss(7) slows
down at higher T due to sharp kinks in I'* at approximately
—0.3 eV and 0.2 eV [Fig. 3(b)] while the slope difference of
I'" and T'V at elevated temperatures leads to a sign reversal
of Sc in comparison with all other model systems. Quantum
confinement effects could be identified as the DOS Van Hove
feature being suppressed with an increasing wire cross section
in Fig. 3(a), but no systematic quantum confinement effect
was found in the transport properties. In Ref. [18], quantum
well states of the Cu/Co interface in the minority-spin channel
were found to have an effect on the transport properties as a
function of the Co layer thickness at an absence of the spin
disorder. However, such quantum confinement effects should
be reconsidered in detail if spin disorder is present, leading to
strong mixing of the two spin channels.

The effect of spin disorder on the Seebeck coefficients
[solid line in Figs. 5(g) and 5(h)] is again generally quite
pronounced as it was in the case of the electrical conductance,
its polarization, and the electrical resistance. An interesting
observation is the rather strong enhancement of Sc due to
the spin disorder for the nanowires embedded in copper. The
origin is obvious when looking at the transmission probability
of the W11(Cu) nanowire in Fig. 3(b). The spin disorder
(shown at 1100 K) causes a drop of the majority spin Lg
coefficient while the kink at T'* very close to Er leads to a
rise in the majority spin L; coefficient. The resulting L;/L
ratio is then significantly enhanced. Very similar behavior is
seen for the W22(Cu) nanowire, where the Sc enhancement
due to the spin disorder is shifted to higher temperatures. This
is caused by the already mentioned kink at I'" positioned
slightly away from Eg (not shown). Furthermore, the spin
disorder is expected to significantly suppress the spin Seebeck
coefficient which is, in general, indeed observed. However,
for the W22(Cu) and W22(Va) nanowires, the S5 remains
relatively large even at very high temperatures due to the
nonvanishing difference of the L; transport coefficient for the
majority and minority spin channels.

IV. SUMMARY

We investigated the effect of temperature-induced spin
disorder on the transport through several Co nanostruc-
tures embedded between Cu leads. The calculation of the
transport properties confirmed that, at elevated temperatures,
spin disorder affects the value of the transport coefficients
both qualitatively and quantitatively, and therefore cannot be
neglected in a theoretical analysis. Additionally, we find that
there is no clear connection between the transport properties
and the density of states, due to the complex convolution of the
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Fermi function derivative and the energy-dependent transport
coefficients. These conclusions apply to the resistance, charge
Seebeck, and spin Seebeck coefficients.

The well-known spin disorder contribution to the resistance
is found to be significant in the systems we studied. The
temperature at which the characteristic kink in the resistance is
observed can be related to the onset of the long-range magnetic
order loss, determined from the spatial correlation of the
fluctuating local magnetic moments. We find a nontrivial
behavior of the charge and spin Seebeck coefficient as a
function of temperature that does not follow a clear universal
semiquantitative or even qualitative rule, as a number of effects
are factored in for its calculation, including the fluctuations
of local magnetic moments, their temperature-dependent
correlation, the quantum confinement due to the nanostructure
geometry, the participating conducting states due to the Fermi
distribution, and the interface transmission. Furthermore, we
showed that a decrease, an enhancement, or even a change
of sign of the charge and spin Seebeck coefficients can result
from an interplay of the spin disorder and the geometry in a
particular microscopic structure.

It is obvious that the spin disorder constitutes only one of
many effects that contribute to the spin-caloric transport at
high temperatures, others being phonons or magnon-assisted
spin transport, not considered in this work. However, our
results show that spin disorder at high temperatures cannot
be neglected for a quantitative or even qualitative description
of thermoelectric and spin-caloric coefficients in magnetic
nanostructures.
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APPENDIX: ELECTRON TRANSPORT THROUGH
NONCOLLINEAR MAGNETIC SYSTEMS IN THE KKR
FRAMEWORK

In the spirit of multiple-scattering theory and the KKR-GF
method, we apply the spin rotations on the site-dependent
t matrices that are then used to calculate the noncollinear
Green’s function via the Dyson equation. Thus the ¢ matrices
are calculated as spin-diagonal quantities in a local spin
frame (indicated by #*0°9) and they are transformed to the
global frame where they are indicated by #*®°® [46]. The
transformation matrix U*, corresponding to the standard
spherical rotation angles 6* and ¢* at the site u, given by

. cos(eﬂ/z)ef%W —sin(eﬂ/z)ef%W A
sin(6*/2) e2?" cos(6”/2) ex? |’

is used to mix the spin-up and spin-down components of the
local ¢ matrix at energy ¢, resulting in a 2 x 2 matrix in spin
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space (0 = 1.])

8 (e) = UM diag[r)' 11 e), 111 ()] (UM, (A2)

where L = (I,m) is the angular momentum quantum number
and 117°?(¢) satisfies the relation

1170 (g) = / dr jL(re)V* (O R (re),  (A3)
where V9 is the spin-dependent potential at site u and j; and
R/ are the Bessel functions and standard radial solutions to
the Kohn-Sham potential at site 1, respectively. The structural
Green’s function matrix G of the system with dimension

2 X Nyt X (Imax + 1)?, with N, the number of atoms, is
obtained via the Dyson equation

G(e) = Go@){I — [t (e) — to(e)] ' Gole)} ",

where L is the unit matrix and G and t, are the reference system
Green’s function matrix and ¢ matrix, respectively. After a
Fourier transform, taking the periodic supercell geometry into
account, the Green’s function is calculated for each momentum
channel k. The transmission probability matrix in spin space
as a function of k; and ¢ is calculated as

7o) =300 3 Ut = T UL = I5)

uw LL' L'L"

(A4)

up'oo’ Hup'oo’x
X G Grogm

(A5)

where J|, is the corresponding current-density matrix ele-
ment in the nonmagnetic lead in a cell associated with the site
p with the volume €2,

no _ L no no
Ji (&)= 7 / dr R; " (r,e)0; R,/ (r,8), (A6)
Q

at m

and dy is the atomic layer thickness [29]. The transmission
probability matrix I'(¢) is calculated between atomic pairs of
the left and right lead, selected in a way that the whole cross
section of the lead is covered (see Fig. 1). As was shown
previously, using one atomic layer on each side yields well-
converged results in the fcc lattice system [29]. We verified it
for the TL system by varying the number of atomic layers used
for the transmission probability calculation. The difference
between I' calculated using one and two layers in the leads did
not exceed 0.3%.

While quantities within the KKR-GF approach are usually
evaluated on a complex energy contour, the transport coeffi-
cients should be calculated from the transmission probability
evaluated on the real energy axis. In the proximity of the
real energy axis, a linear dependence of I'(¢) on Im(g) is
expected [23]. Thus, the transmission probability I'(g) can be
calculated for several small values of the ¢ imaginary part [but
setting Im(e) large enough to ensure numerical stability in the
Green’s function calculation] and an estimate of I'(E) [where
E = Re(¢)] is then obtained as a linear extrapolation of I'(¢)
to Im(e) = 0. We indeed found a very close to linear behavior
of I'(¢) on small values of Im(g) down to 0.04 mRy and for
all production runs, we calculated I’ for two Im(e) values
corresponding to a smearing temperature of 20 K (0.4 mRy)
and 10 K (*0.2 mRy) and extrapolated the results to 0 K.
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