111 research outputs found

    A Novel Clustering Model Based on Set Pair Analysis for the Energy Consumption Forecast in China

    Get PDF
    The energy consumption forecast is important for the decision-making of national economic and energy policies. But it is a complex and uncertainty system problem affected by the outer environment and various uncertainty factors. Herein, a novel clustering model based on set pair analysis (SPA) was introduced to analyze and predict energy consumption. The annual dynamic relative indicator (DRI) of historical energy consumption was adopted to conduct a cluster analysis with Fisher’s optimal partition method. Combined with indicator weights, group centroids of DRIs for influence factors were transferred into aggregating connection numbers in order to interpret uncertainty by identity-discrepancy-contrary (IDC) analysis. Moreover, a forecasting model based on similarity to group centroid was discussed to forecast energy consumption of a certain year on the basis of measured values of influence factors. Finally, a case study predicting China’s future energy consumption as well as comparison with the grey method was conducted to confirm the reliability and validity of the model. The results indicate that the method presented here is more feasible and easier to use and can interpret certainty and uncertainty of development speed of energy consumption and influence factors as a whole

    Stepsize Restrictions for Nonlinear Stability Properties of Neutral Delay Differential Equations

    Get PDF
    The present paper is concerned with the relationship between stepsize restriction and nonlinear stability of Runge-Kutta methods for delay differential equations. We obtain a special stepsize condition guaranteeing global and asymptotical stability properties of numerical methods. Some confirmations of the conditions on Runge-Kutta methods are illustrated at last

    2007-2008 Master Class - Charles Castleman (Violin)

    Get PDF
    Charles Castleman Performance (October 6, 2007) - Programhttps://spiral.lynn.edu/conservatory_masterclasses/1115/thumbnail.jp

    How wavelength affects the hydrodynamic performance of two accelerating mirror-symmetric slender swimmers

    Get PDF
    Fish schools are capable of simultaneous linear acceleration. To reveal the underlying hydrodynamic mechanism, we numerically investigate how Reynolds number Re=1000−2000 Re = 1000 - 2000 , Strouhal number St=0.2−0.7 St = 0.2 - 0.7 and wavelength λ=0.5−2 \lambda = 0.5 - 2 affect the mean net thrust and net propulsive efficiency of two side-by-side hydrofoils undulating in anti-phase. In total, 550 550 cases are simulated using immersed boundary method. The thrust increases significantly with wavelength and Strouhal number, yet only slightly with the Reynolds number. We apply a symbolic regression algorithm to formulate this relationship. Furthermore, we find that mirror-symmetric schooling can achieve a \textit{net} thrust more than ten times that of a single swimmer, especially at low Reynolds numbers. The highest efficiency is obtained at St=0.5 St = 0.5 and λ=1.2 \lambda = 1.2 , where St St is consistent with that observed in the linear-accelerating natural swimmers, \eg Crevalle jack. Six distinct flow structures are identified. The highest thrust corresponds to an asymmetric flow pattern, whereas the highest efficiency occurs when the flow is symmetric with converging vortex streets.Comment: This paper has been accepted by Physics of Fluids. This is the accepted versio
    • …
    corecore