3,000 research outputs found

    Role of the aryl hydrocarbon receptor in Sugen 5416-induced experimental pulmonary hypertension

    Get PDF
    Rationale: Rats dosed with the vascular endothelial growth factor (VEGF) inhibitor Sugen 5416 (Su), placed in hypoxia then restored to normoxia has become a widely used model of pulmonary arterial hypertension (PAH). The mechanism by which Su exaccerbates pulmonary hypertension is, however, unclear. Objectives: We investigated Su-activation of the aryl hydrocarbon receptor (AhR) in patient human pulmonary arterial smooth muscle cells (hPASMCs) and patient blood outgrowth endothelial cells (BOECs). We also examined the effect of AhR on aromatase and estrogen levels in the lung. Methods, Measurements and Main Results: Protein and mRNA analysis demonstrated that CYP1A1 was very highly induced in the lungs of Su/hypoxic (Su/Hx) rats. The AhR antagonist CH223191 (8mg/kg/day) reversed the development of PAH in this model in vivo and normalized lung CYP1A1 expression. Increased lung aromatase and estrogen levels in Su/Hx rats were also normalized by CH223191 as was AhR nuclear translocator (ARNT [HIF-1β]) which is shared by HIF-1α and AhR. Su reduced HIF1α expression in hPASMCs. Su induced proliferation in BOECs and increased apoptosis in human pulmonary microvascular endothelial cells (hPMECs) and also induced translocation of AhR to the nucleus in hPASMCs. Under normoxic conditions, hPASMCs do not proliferate to Su. However when grown in hypoxia (1%) Su induced hPASMC proliferation. Conclusion: In combination with hypoxia, Su is proliferative in patient hPASMCs and patient BOECs and Su/Hx-induced PAH in rats may be facilitated by AhR-induced CYP1A1, ARNT and aromatase. Inhibition of the AhR receptor may be a novel approach to the treatment of pulmonary hypertension

    Shape Changes of Self-Assembled Actin Bilayer Composite Membranes

    Full text link
    We report the self-assembly of thin actin shells beneath the membranes of giant vesicles. Ion-carrier mediated influx of Mg2+ induces actin polymerization in the initially spherical vesicles. Buckling of the vesicles and the formation of blisters after thermally induced bilayer expansion is demonstrated. Bilayer flickering is dominated by tension generated by its coupling to the actin cortex. Quantitative flicker analysis suggests the bilayer and the actin cortex are separated by 0.4 \mum to 0.5 \mum due to undulation forces.Comment: pdf-file, has been accepted by PR

    The Intrinsic Origin of Spin Echoes in Dipolar Solids Generated by Strong Pi Pulses

    Full text link
    In spectroscopy, it is conventional to treat pulses much stronger than the linewidth as delta-functions. In NMR, this assumption leads to the prediction that pi pulses do not refocus the dipolar coupling. However, NMR spin echo measurements in dipolar solids defy these conventional expectations when more than one pi pulse is used. Observed effects include a long tail in the CPMG echo train for short delays between pi pulses, an even-odd asymmetry in the echo amplitudes for long delays, an unusual fingerprint pattern for intermediate delays, and a strong sensitivity to pi-pulse phase. Experiments that set limits on possible extrinsic causes for the phenomena are reported. We find that the action of the system's internal Hamiltonian during any real pulse is sufficient to cause the effects. Exact numerical calculations, combined with average Hamiltonian theory, identify novel terms that are sensitive to parameters such as pulse phase, dipolar coupling, and system size. Visualization of the entire density matrix shows a unique flow of quantum coherence from non-observable to observable channels when applying repeated pi pulses.Comment: 24 pages, 27 figures. Revised from helpful referee comments. Added new Table IV, new paragraphs on pages 3 and 1

    Dose-related Effects of Salvinorin A in Humans: Dissociative, Hallucinogenic, and Memory Effects

    Get PDF
    RATIONALE: Salvinorin A is a kappa opioid agonist and the principal psychoactive constituent of the plant Salvia divinorum, which has increased in popularity as a recreational drug over the past decade. Few human studies have examined salvinorin A. OBJECTIVE: This double-blind, placebo-controlled study evaluated the dose-related effects of inhaled salvinorin A in individuals with histories of hallucinogen use. METHODS: Eight healthy hallucinogen-using adults inhaled up to 16 doses of salvinorin A (0.375 - 21 μg/kg) in ascending order. Physiological, behavioral, and subjective effects were assessed every 2 min for 60 min after administration. Qualitative subjective effects were assessed retrospectively via questionnaires at the end of sessions. Persisting effects were assessed 1 month later. RESULTS: Orderly dose-related effects peaked at 2 min and then rapidly dissipated, replicating previous findings. Subjective effects were intense, with maximal drug strength ratings or unresponsiveness frequently observed at high doses. Questionnaires assessing qualitative effects (Hallucinogen Rating Scale, Pharmacological Class Questionnaire) suggested some overlap with serotonergically mediated classic hallucinogens. Salvinorin A also produced dose-related dissociative effects and impairments in recall/recognition memory. At 1-month follow-up, there was no evidence of persisting adverse effects. Participants reported salvinorin A effects were qualitatively different from other drugs. CONCLUSIONS: Salvinorin A produces a unique profile of subjective and cognitive effects, including strong dissociative effects and memory impairment, which only partially overlap with classic hallucinogen effects. Along with nonhuman studies of salvinorin A, these results are important for understanding the neurobiology of the kappa opioid system and may ultimately have important therapeutic applications

    Human psychopharmacology and dose-effects of salvinorin A, a kappa-opioid agonist hallucinogen present in the plant Salvia divinorum

    Get PDF
    Salvinorin A is a potent, selective nonnitrogenous kappa opioid agonist and the known psychoactive constituent of Salvia divinorum, a member of the mint family that has been used for centuries by Mazatec shamans of Mexico for divination and spiritual healing. Salvia divinorum has over the last several years gained increased popularity as a recreational drug. This is a double-blind, placebo controlled study of salvinorin A in 4 psychologically and physically healthy hallucinogen-using adults. Across sessions, participants inhaled 16 ascending doses of salvinorin A and 4 intermixed placebo doses under comfortable and supportive conditions. Doses ranged from 0.375 μg/kg to 21 μg/kg. Subject-rated drug strength was assessed every 2 minutes for 60 minutes after inhalation. Orderly time- and dose-related effects were observed. Drug strength ratings peaked at 2 minutes (first time point) and definite subjective effects were no longer present at approximately 20 minutes after inhalation. Dose-related increases were observed on questionnaire measures of mystical-type experience (Mysticism Scale) and subjective effects associated with classic serotonergic (5-HT2A) hallucinogens (Hallucinogen Rating Scale). Salvinorin A did not significantly increase heart rate or blood pressure. Participant narratives indicated intense experiences characterized by disruptions in vestibular and interoceptive signals (e.g., change in spatial orientation, pressure on the body) and unusual and sometimes recurring themes across sessions such as revisiting childhood memories, cartoon-like imagery, and contact with entities. Under these prepared and supportive conditions, salvinorin A occasioned a unique profile of subjective effects having similarities to classic hallucinogens, including mystical-type effects

    Population genetics of trypanosoma brucei rhodesiense: clonality and diversity within and between foci

    Get PDF
    African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda) and Southern (Malawi) Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics

    Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline

    Get PDF
    <b>Objective</b>: MicroRNAs (miRNAs) are small noncoding RNAs that have the capacity to control protein production through binding "seed" sequences within a target mRNA. Each miRNA is capable of potentially controlling hundreds of genes. The regulation of miRNAs in the lung during the development of pulmonary arterial hypertension (PAH) is unknown.<p></p> <b>Methods and Results</b>: We screened lung miRNA profiles in a longitudinal and crossover design during the development of PAH caused by chronic hypoxia or monocrotaline in rats. We identified reduced expression of Dicer, involved in miRNA processing, during the onset of PAH after hypoxia. MiR-22, miR-30, and let-7f were downregulated, whereas miR-322 and miR-451 were upregulated significantly during the development of PAH in both models. Differences were observed between monocrotaline and chronic hypoxia. For example, miR-21 and let-7a were significantly reduced only in monocrotaline-treated rats. MiRNAs that were significantly regulated were validated by quantitative polymerase chain reaction. By using in vitro studies, we demonstrated that hypoxia and growth factors implicated in PAH induced similar changes in miRNA expression. Furthermore, we confirmed miR-21 downregulation in human lung tissue and serum from patients with idiopathic PAH.<p></p> <b>Conclusion</b>: Defined miRNAs are regulated during the development of PAH in rats. Therefore, miRNAs may contribute to the pathogenesis of PAH and represent a novel opportunity for therapeutic intervention.<p></p&gt

    MicroRNA-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension

    Get PDF
    Rationale: The pathogenesis of PAH remains unclear. The four microRNAs representing the miR-143 and miR-145 stem loops are genomically clustered. Objective: To elucidate the transcriptional regulation of the miR-143/145 cluster, and the role of miR-143 in PAH. Methods and Results: We identified the promoter region that regulates miR-143/145 miRNA expression in pulmonary artery smooth muscle cells (PASMCs). We mapped PAH-related signalling pathways, including estrogens receptor (ER), liver X factor/retinoic X receptor (LXR/RXR), TGF-β (Smads), and hypoxia (HRE) that regulated levels of all pri-miR stem loop transcription and resulting miRNA expression. We observed that miR-143-3p is selectively upregulated compared to miR-143-5p during PASMC migration. Modulation of miR-143 in PASMCs significantly altered cell migration and apoptosis. In addition, we found high abundance of miR-143-3p in PASMCs-derived exosomes. Using assays with pulmonary arterial endothelial cells (PAECs) we demonstrated a paracrine pro-migratory and pro-angiogenic effect of miR-143-3p enriched exosomes from PASMC. Quantitative PCR and in situ hybridisation showed elevated expression of miR-143 in calf models of PAH as well as in samples from PAH patients. Moreover, in contrast to our previous findings that had not supported a therapeutic role in vivo, we now demonstrate a protective role for miR-143 in experimental PH in vivo in miR-143-/- and antimiR143-3p-treated mice exposed to chronic hypoxia in both preventative and reversal settings. Conclusions: MiR-143-3p modulated both cellular and exosome-mediated responses in pulmonary vascular cells, while inhibition of miR-143-3p blocked experimental PH. Taken together these findings confirm an important role for the miR-143/145 cluster in PAH pathobiology
    corecore