22,036 research outputs found

    (1+1)(1+1) dimensional Dirac equation with non Hermitian interaction

    Full text link
    We study (1+1)(1+1) dimensional Dirac equation with non Hermitian interactions, but real energies. In particular, we analyze the pseudoscalar and scalar interactions in detail, illustrating our observations with some examples. We also show that the relevant hidden symmetry of the Dirac equation with such an interaction is pseudo supersymmetry.Comment: 9 page

    Book Review: The Impact of Ancient Indian Thought on Christianity

    Get PDF
    A review of The Impact on Ancient Indian Thought on Christianity by Braj M. Sinha

    Octet baryon magnetic moments from QCD sum rules

    Full text link
    A comprehensive study is made for the magnetic moments of octet baryons in the method of QCD sum rules. A complete set of QCD sum rules is derived using the external field method and generalized interpolating fields. For each member, three sum rules are constructed from three independent tensor structures. They are analyzed in conjunction with the corresponding mass sum rules. The performance of each of the sum rules is examined using the criteria of OPE convergence and ground-state dominance, along with the role of the transitions in intermediate states. Individual contributions from the u, d and s quarks are isolated and their implications in the underlying dynamics are explored. Valid sum rules are identified and their predictions are obtained. The results are compared with experiment and previous calculations.Comment: 21 pages, 11 figures, 6 figures; added a reference, minor change in tex

    Motion sequence analysis in the presence of figural cues

    Full text link
    Published in final edited form as: Neurocomputing. 2015 January 5, 147: 485–491The perception of 3-D structure in dynamic sequences is believed to be subserved primarily through the use of motion cues. However, real-world sequences contain many figural shape cues besides the dynamic ones. We hypothesize that if figural cues are perceptually significant during sequence analysis, then inconsistencies in these cues over time would lead to percepts of non-rigidity in sequences showing physically rigid objects in motion. We develop an experimental paradigm to test this hypothesis and present results with two patients with impairments in motion perception due to focal neurological damage, as well as two control subjects. Consistent with our hypothesis, the data suggest that figural cues strongly influence the perception of structure in motion sequences, even to the extent of inducing non-rigid percepts in sequences where motion information alone would yield rigid structures. Beyond helping to probe the issue of shape perception, our experimental paradigm might also serve as a possible perceptual assessment tool in a clinical setting.The authors wish to thank all observers who participated in the experiments reported here. This research and the preparation of this manuscript was supported by the National Institutes of Health RO1 NS064100 grant to LMV. (RO1 NS064100 - National Institutes of Health)Accepted manuscrip

    Dynamic Transitions in Small World Networks: Approach to Equilibrium

    Get PDF
    We study the transition to phase synchronization in a model for the spread of infection defined on a small world network. It was shown (Phys. Rev. Lett. {\bf 86} (2001) 2909) that the transition occurs at a finite degree of disorder pp, unlike equilibrium models where systems behave as random networks even at infinitesimal pp in the infinite size limit. We examine this system under variation of a parameter determining the driving rate, and show that the transition point decreases as we drive the system more slowly. Thus it appears that the transition moves to p=0p=0 in the very slow driving limit, just as in the equilibrium case.Comment: 8 pages, 2 figure

    Hadronic components of EAS by rigorous saddle point method in the energy range between 10(5) and 10(8) GeV

    Get PDF
    The study of hadronic components in the high energy range between 10 to the 5 and 10 to the 8 Gev exhibits by far the strongest mass sensitivity since the primary energy spectrum as discussed by Linsley and measured by many air shower experimental groups indicates a change of slope from -1.7 to 2.0 in this energy range. This change of slope may be due to several reasons such as a genuine spectral feature of astrophysical origin, a confinement effect of galactic component or a rather rapid change of mass, a problem which we have attempted to study here in detail
    • …
    corecore