157 research outputs found

    Tuning Jammed Frictionless Disk Packings from Isostatic to Hyperstatic

    Get PDF
    We perform extensive computational studies of two-dimensional static bidisperse disk packings using two distinct packing-generation protocols. The first involves thermally quenching equilibrated liquid configurations to zero temperature over a range of thermal quench rates rr and initial packing fractions followed by compression and decompression in small steps to reach packing fractions ϕJ\phi_J at jamming onset. For the second, we seed the system with initial configurations that promote micro- and macrophase-separated packings followed by compression and decompression to ϕJ\phi_J. We find that amorphous, isostatic packings exist over a finite range of packing fractions from ϕmin≤ϕJ≤ϕmax\phi_{\rm min} \le \phi_J \le \phi_{\rm max} in the large-system limit, with ϕmax≈0.853\phi_{\rm max} \approx 0.853. In agreement with previous calculations, we obtain ϕmin≈0.84\phi_{\rm min} \approx 0.84 for r>r∗r > r^*, where r∗r^* is the rate above which ϕJ\phi_J is insensitive to rate. We further compare the structural and mechanical properties of isostatic versus hyperstatic packings. The structural characterizations include the contact number, bond orientational order, and mixing ratios of the large and small particles. We find that the isostatic packings are positionally and compositionally disordered, whereas bond-orientational and compositional order increase with contact number for hyperstatic packings. In addition, we calculate the static shear modulus and normal mode frequencies of the static packings to understand the extent to which the mechanical properties of amorphous, isostatic packings are different from partially ordered packings. We find that the mechanical properties of the packings change continuously as the contact number increases from isostatic to hyperstatic.Comment: 11 pages, 15 figure

    Rods are less fragile than spheres: Structural relaxation in dense liquids composed of anisotropic particles

    Full text link
    We perform extensive molecular dynamics simulations of dense liquids composed of bidisperse dimer- and ellipse-shaped particles in 2D that interact via repulsive contact forces. We measure the structural relaxation times obtained from the long-time decay of the self-part of the intermediate scattering function for the translational and rotational degrees of freedom (DOF) as a function of packing fraction \phi, temperature T, and aspect ratio \alpha. We are able to collapse the \phi and T-dependent structural relaxation times for disks, and dimers and ellipses over a wide range of \alpha, onto a universal scaling function {\cal F}_{\pm}(|\phi-\phi_0|,T,\alpha), which is similar to that employed in previous studies of dense liquids composed of purely repulsive spherical particles in 3D. {\cal F_{\pm}} for both the translational and rotational DOF are characterized by the \alpha-dependent scaling exponents \mu and \delta and packing fraction \phi_0(\alpha) that signals the crossover in the scaling form {\cal F}_{\pm} from hard-particle dynamics to super-Arrhenius behavior for each aspect ratio. We find that the fragility at \phi_0, m(\phi_0), decreases monotonically with increasing aspect ratio for both ellipses and dimers. Moreover, the results for the slow dynamics of dense liquids composed of dimer- and ellipse-shaped particles are qualitatively the same, despite the fact that zero-temperature static packings of dimers are isostatic, while static packings of ellipses are hypostatic.Comment: 10 pages, 17 figures, and 1 tabl

    Constraints and vibrations in static packings of ellipsoidal particles

    Full text link
    We numerically investigate the mechanical properties of static packings of ellipsoidal particles in 2D and 3D over a range of aspect ratio and compression Δϕ\Delta \phi. While amorphous packings of spherical particles at jamming onset (Δϕ=0\Delta \phi=0) are isostatic and possess the minimum contact number zisoz_{\rm iso} required for them to be collectively jammed, amorphous packings of ellipsoidal particles generally possess fewer contacts than expected for collective jamming (z<zisoz < z_{\rm iso}) from naive counting arguments, which assume that all contacts give rise to linearly independent constraints on interparticle separations. To understand this behavior, we decompose the dynamical matrix M=H−SM=H-S for static packings of ellipsoidal particles into two important components: the stiffness HH and stress SS matrices. We find that the stiffness matrix possesses N(ziso−z)N(z_{\rm iso} - z) eigenmodes e^0{\hat e}_0 with zero eigenvalues even at finite compression, where NN is the number of particles. In addition, these modes e^0{\hat e}_0 are nearly eigenvectors of the dynamical matrix with eigenvalues that scale as Δϕ\Delta \phi, and thus finite compression stabilizes packings of ellipsoidal particles. At jamming onset, the harmonic response of static packings of ellipsoidal particles vanishes, and the total potential energy scales as δ4\delta^4 for perturbations by amplitude δ\delta along these `quartic' modes, e^0{\hat e}_0. These findings illustrate the significant differences between static packings of spherical and ellipsoidal particles.Comment: 18 pages, 21 figure

    Jamming in Systems Composed of Frictionless Ellipse-Shaped Particles

    Full text link
    We study the structural and mechanical properties of jammed ellipse packings, and find that the nature of the jamming transition in these systems is fundamentally different from that for spherical particles. Ellipse packings are generically hypostatic with more degrees of freedom than constraints. The spectra of low energy excitations possess two gaps and three distinct branches over a range of aspect ratios. In the zero compression limit, the energy of the modes in the lowest branch increases {\it quartically} with deformation amplitude, and the density of states possesses a δ\delta-function at zero frequency. We identify scaling relations that collapse the low-frequency part of the spectra for different aspect ratios. Finally, we find that the degree of hypostaticity is determined by the number of quartic modes of the packing.Comment: 4 pages, 4 figure
    • …
    corecore