17 research outputs found

    The population structure of Pseudomonas aeruginosa is characterized by genetic isolation of exoU+ and exoS+ lineages

    Get PDF
    The diversification of microbial populations may be driven by many factors including adaptation to distinct ecological niches and barriers to recombination. We examined the population structure of the bacterial pathogen Pseudomonas aeruginosa by analyzing whole-genome sequences of 739 isolates from diverse sources. We confirmed that the population structure of P. aeruginosa consists of two major groups (referred to as Groups A and B) and at least two minor groups (Groups C1 and C2). Evidence for frequent intra-group but limited inter-group recombination in the core genome was observed, consistent with sexual isolation of the groups. Likewise, accessory genome analysis demonstrated more gene flow within Groups A and B than between these groups, and a few accessory genomic elements were nearly specific to one or the other group. In particular, the exoS gene was highly over-represented in Group A compared to Group B isolates (99.4% vs. 1.1%) and the exoU gene was highly over-represented in Group B compared to Group A isolates (95.2% vs. 1.8%). The exoS and exoU genes encode effector proteins secreted by the P. aeruginosa type III secretion system. Together these results suggest that the major P. aeruginosa groups defined in part by the exoS and exoU genes are divergent from each other, and that these groups are genetically isolated and may be ecologically distinct. Although both groups were globally distributed and caused human infections, certain groups predominated in some clinical contexts

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    ClustAGE: a tool for clustering and distribution analysis of bacterial accessory genomic elements

    No full text
    Abstract Background The non-conserved accessory genome of bacteria can be associated with important adaptive characteristics that can contribute to niche specificity or pathogenicity of strains. High degrees of structural and compositional diversity in genomic islands and other elements of the accessory genome can complicate characterization of accessory genome contents among populations of strains. Methods for easily and effectively defining the distributions of discrete elements of the accessory genome among bacterial strains in a population are needed to explore the relationships between the flexible genome and bacterial adaptive traits. Results We have developed the open-source software package ClustAGE. This program, written in Perl, uses BLAST to cluster nucleotide accessory genomic elements from the genomes of multiple bacterial strains and to identify their distribution within the study population. The program output can be used in combination with strain phenotype data or other characteristics to detect associations. Optional graphical output is available for visualizing accessory genome gene content and distribution patterns. The capabilities of the software are demonstrated on a collection of 14 Pseudomonas aeruginosa genome sequences. Conclusions The ClustAGE software and utilities are effective for identifying characteristics and distributions of accessory genomic elements among groups of bacterial genomes. The ability to easily and effectively characterize the accessory genome of a sequence collection may provide a better understanding of the accessory genome’s contribution to a species’ adaptation and pathogenesis. The ClustAGE source code can be downloaded from https://clustage.sourceforge.io and a limited web-based implementation is available at http://vfsmspineagent.fsm.northwestern.edu/cgi-bin/clustage.cgi

    Challenges and Opportunities for Global Genomic Surveillance Strategies in the COVID-19 Era

    No full text
    Global SARS-CoV-2 genomic surveillance efforts have provided critical data on the ongoing evolution of the virus to inform best practices in clinical care and public health throughout the pandemic. Impactful genomic surveillance strategies generally follow a multi-disciplinary pipeline involving clinical sample collection, viral genotyping, metadata linkage, data reporting, and public health responses. Unfortunately, current limitations in each of these steps have compromised the overall effectiveness of these strategies. Biases from convenience-based sampling methods can obfuscate the true distribution of circulating variants. The lack of standardization in genotyping strategies and bioinformatic expertise can create bottlenecks in data processing and complicate interpretation. Limitations and inconsistencies in clinical and demographic data collection and sharing can slow the compilation and limit the utility of comprehensive datasets. This likewise can complicate data reporting, restricting the availability of timely data. Finally, gaps and delays in the implementation of genomic surveillance data in the public health sphere can prevent officials from formulating effective mitigation strategies to prevent outbreaks. In this review, we outline current SARS-CoV-2 global genomic surveillance methods and assess roadblocks at each step of the pipeline to identify potential solutions. Evaluating the current obstacles that impede effective surveillance can improve both global coordination efforts and pandemic preparedness for future outbreaks

    Discovery of a new neisseria gonorrhoeae type iv pilus assembly factor, tfpc

    No full text
    ABSTRACT Neisseria gonorrhoeae relies on type IV pili (T4p) to promote colonization of their human host and to cause the sexually transmitted infection gonorrhea. This organelle cycles through a process of extension and retraction back into the bacterial cell. Through a genetic screen, we identified the NGO0783 locus of N. gonorrhoeae strain FA1090 as containing a gene encoding a protein required to stabilize the type IV pilus in its extended, nonretracted conformation. We have named the gene tfpC and the protein TfpC. Deletion of tfpC produces a nonpiliated colony morphology, and immuno-transmission electron microscopy confirms that the pili are lost in the ΔtfpC mutant, although there is some pilin detected near the bacterial cell surface. A copy of the tfpC gene expressed from a lac promoter restores pilus expression and related phenotypes. A ΔtfpC mutant shows reduced levels of pilin protein, but complementation with a tfpC gene restored pilin to normal levels. Bioinformatic searches show that there are orthologues in numerous bacterial species, but not all type IV pilin-expressing bacteria contain orthologous genes. Coevolution and nuclear magnetic resonance (NMR) analysis indicates that TfpC contains an N-terminal transmembrane helix, a substantial extended/unstructured region, and a highly charged C-terminal coiled-coil domain. IMPORTANCE Most bacterial species express one or more extracellular organelles called pili/fimbriae that are required for many properties of each bacterial cell. The Neisseria gonorrhoeae type IV pilus is a major virulence and colonization factor for the sexually transmitted infection gonorrhea. We have discovered a new protein of Neisseria gonorrhoeae called TfpC that is required to maintain type IV pili on the bacterial cell surface. There are similar proteins found in other members of the Neisseria genus and many other bacterial species important for human health

    ViralVar: A Web Tool for Multilevel Visualization of SARS-CoV-2 Genomes

    No full text
    The unprecedented growth of publicly available SARS-CoV-2 genome sequence data has increased the demand for effective and accessible SARS-CoV-2 data analysis and visualization tools. The majority of the currently available tools either require computational expertise to deploy them or limit user input to preselected subsets of SARS-CoV-2 genomes. To address these limitations, we developed ViralVar, a publicly available, point-and-click webtool that gives users the freedom to investigate and visualize user-selected subsets of SARS-CoV-2 genomes obtained from the GISAID public database. ViralVar has two primary features that enable: (1) the visualization of the spatiotemporal dynamics of SARS-CoV-2 lineages and (2) a structural/functional analysis of genomic mutations. As proof-of-principle, ViralVar was used to explore the evolution of the SARS-CoV-2 pandemic in the USA in pediatric, adult, and elderly populations (n > 1.7 million genomes). Whereas the spatiotemporal dynamics of the variants did not differ between these age groups, several USA-specific sublineages arose relative to the rest of the world. Our development and utilization of ViralVar to provide insights on the evolution of SARS-CoV-2 in the USA demonstrates the importance of developing accessible tools to facilitate and accelerate the large-scale surveillance of circulating pathogens
    corecore