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Data deposition: All genomic sequences are deposited at NCBI 

(www.ncbi.nlm.nih.gov). Accession numbers are provided in the Materials and 

Methods section and supplemental materials. 

Abstract: 

The diversification of microbial populations may be driven by many factors 

including adaptation to distinct ecological niches and barriers to recombination. 

We examined the population structure of the bacterial pathogen Pseudomonas 

aeruginosa by analyzing whole-genome sequences of 739 isolates from diverse 

sources. We confirmed that the population structure of P. aeruginosa consists of 

two major groups (referred to as Groups A and B) and at least two minor groups 

(Groups C1 and C2). Evidence for frequent intra-group but limited inter-group 

recombination in the core genome was observed, consistent with sexual isolation 

of the groups. Likewise, accessory genome analysis demonstrated more gene 

flow within Groups A and B than between these groups, and a few accessory 

genomic elements were nearly specific to one or the other group.  In particular, 

the exoS gene was highly over-represented in Group A compared to Group B 

isolates (99.4% vs. 1.1%) and the exoU gene was highly over-represented in 

Group B compared to Group A isolates (95.2% vs. 1.8%). The exoS and exoU 

genes encode effector proteins secreted by the P. aeruginosa type III secretion 

system. Together these results suggest that the major P. aeruginosa groups 

defined in part by the exoS and exoU genes are divergent from each other, and 

that these groups are genetically isolated and may be ecologically distinct.  
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Although both groups were globally distributed and caused human infections, 

certain groups predominated in some clinical contexts.   

Key words: population structure, recombination, whole-genome phylogenetics, 

microbial evolution, accessory genome, exoU, exoS 

 

Introduction: 

 Pseudomonas aeruginosa is a gram-negative bacterium that is 

remarkable for its worldwide ubiquity and extensive environmental distribution in 

soil, water, and plant matter as well as its ability to cause a variety of 

opportunistic infections in humans. It is a major cause of morbidity and mortality 

in hospitalized patients and those with cystic fibrosis. In addition to the production 

of a formidable number of virulence factors, both intrinsic and acquired antibiotic 

resistance mechanisms contribute to the species’ importance as a human 

pathogen.   

 Several previous investigations into the population structure of P. 

aeruginosa have been undertaken. Earlier studies relied on a variety of typing 

methods, such as gel electrophoresis banding patterns, multi-locus sequence 

typing, or microarray analysis to characterize relationships between groups of 

isolates (Kiewitz and Tummler 2000; Pirnay, et al. 2009; Wiehlmann, et al. 2007). 

As next-generation sequencing has become more affordable and widely 

available, P. aeruginosa population studies have started using whole-genome 

comparisons between increasing numbers of isolates (Freschi, et al. 2015; 

Freschi, et al. 2019; Hilker, et al. 2015; Marvig, et al. 2015; Stewart, et al. 2011; 
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Williams, et al. 2015). In these phylogenetic analyses, isolates within the 

populations examined have generally clustered into two large clades and one 

small clade. The geographical sources of isolates do not appear to account for 

these phylogenetic clusters (England, et al. 2018; Kos, et al. 2015; Wiehlmann, 

et al. 2007). Recent studies showed certain genotypes were found more 

abundantly in environmental isolates than in human-derived isolates, and vice 

versa (Rutherford, et al. 2018; Wiehlmann, et al. 2015). However, the genetic 

differences underlying the observed population structure and possible 

mechanisms for these differences have not yet been defined. 

 Early studies classified P. aeruginosa isolates as either cytotoxic or 

invasive (Fleiszig, et al. 1996). It was later discovered that cytotoxic isolates 

usually secreted the effector protein ExoU by a type III secretion pathway (Finck-

Barbançon, et al. 1997). ExoU is a patatin-like phospholipase A2 (PLA2) enzyme 

that cleaves lipids within eukaryotic host cell membranes (Phillips, et al. 2003; 

Sato and Frank 2004). In contrast, invasive isolates usually secreted ExoS, 

which is a bifunctional enzyme with Rho GTPase-activating protein and ADP-

ribosyltransferase activities (Barbieri and Sun 2004) that causes multiple effects 

on eukaryotic cells, including cell rounding and apoptosis (Barbieri, et al. 2001; 

Kaufman, et al. 2000). For unclear reasons, the large majority of P. aeruginosa 

isolates contain either the exoU or the exoS gene, but isolates rarely carry both 

genes or neither gene (Bradbury, et al. 2010; Feltman, et al. 2001; Garey, et al. 

2008; Lomholt, et al. 2001; Pirnay, et al. 2009). This distinction is of clinical 

importance, as exoU+ isolates are associated with more severe infections and 
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higher mortality in acutely infected patients (El-Solh, et al. 2012; Finck-

Barbançon, et al. 1997; Hauser, et al. 1998; Pena, et al. 2015; Schulert, et al. 

2003; Shaver and Hauser 2004).  

 We sought to examine the population structure of a collection of 739 

geographically diverse clinical and environmental P. aeruginosa isolates using 

whole-genome phylogenetic analysis. We confirmed that most P. aeruginosa 

isolates fell into one of two large groups based upon the core genome, with rare 

isolates belonging to one of at least two smaller groups. We showed that core 

and accessory gene flow between isolates of the same group was much greater 

than between isolates of different groups, suggesting that the two groups are 

genetically isolated.  We identified core and accessory sequences that were 

highly discriminatory between the two major groups. In particular, exoS was 

present in nearly all the isolates of one large group and exoU in nearly all the 

isolates of the other large group. 

 

Materials and Methods: 

Pseudomonas aeruginosa isolates 

A total of 730 genomic sequences representing all complete P. aeruginosa 

genomic sequences as well as all draft genomic sequence contigs was 

downloaded from the NCBI FTP site (ftp.ncbi.nlm.nih.gov) on Feb 3, 2015. 

Isolate demographic information including continent and country of origin, clinical 

or environmental source, and cystic fibrosis (CF) status of the source patient for 

clinical isolates was determined, when available, from NCBI BioSample or 
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BioProject entries. In cases where the relevant information was not listed in these 

resources, associated publications, as listed in the NCBI BioProject entries for 

the isolates, were manually reviewed for the relevant metadata.  

 

Previously unsequenced environmental isolates 

Nine previously-described environmental isolates of P. aeruginosa 

(Feltman, et al. 2001) were selected for sequencing. These isolates were 

streaked from -80°C frozen stocks, inoculated in Luria-Bertani (LB) broth, and 

grown with shaking overnight at 37°C. Genomic DNA was extracted from the 

cultures using the Promega Maxwell 16 instrument (Madison, WI) according to 

the manufacturer’s instructions. Genomic DNA was sequenced on the HiSeq 

2000 platform yielding 101 bp paired-end reads.  To maximize assembly quality 

(Wall, et al. 2014), each paired read set was randomly down-sampled to obtain 

estimated 80-fold genome coverage and de novo assembled using Ray v1.7.0 

(Boisvert, et al. 2010). Assembled contigs smaller than 200 bp were removed 

from the analysis.  Contig sequences were deposited in GenBank under 

assembly accession numbers GCA_002239415.1, GCA_002239425.1, 

GCA_002239445.1, GCA_002239465.1, GCA_002239485.1, 

GCA_002239505.1, GCA_002239535.1, GCA_002239545.1, and 

GCA_002239565.1 

 

Type III effector, O-antigen biosynthesis locus, and genomic island typing 
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Reference nucleotide sequences of the type III effector genes exoU (locus 

ID PA14_51530 in strain UCBPP-PA14) and exoS (locus ID PA3841 in strain 

PAO1) were obtained from the Pseudomonas Genome Database (Winsor, et al. 

2011). Presence or absence of the exoU and exoS genes was determined by 

blastn alignment of the exoU and exoS nucleotide sequences against the 

genomic sequences of each isolate using default parameters (Altschul, et al. 

1990). The contents of exoS gene locus were identified using in silico PCR to 

extract sequences between conserved flanking genes PA3840 

(ATGCCCCGCCCGACCAGCCC)and spcS (TCAGCGTAGCTCTTCGGCGG).  

O-antigen biosynthetic gene cluster typing was performed using in silico 

PCR. Given the variability in sizes and the heterogeneity of the contents of the O-

antigen biosynthetic locus among strains, we chose the in silico PCR approach to 

identify and isolate the loci contents based on conserved flanking region 

sequences. Sequences of genes rpsA (locus ID PA3162 in strain PAO1) and tyrB 

(locus ID PA3139 in strain PAO1), which are conserved and flank the O-antigen 

region, were obtained from the Pseudomonas Genome Database (Winsor, et al. 

2011). The reverse-complement of the first 20 nucleotides of the rpsA gene 

(AGATGGAGAATCAGGGCTAA) were used as the forward primer sequence and 

the first 20 bases of the tyrB gene (CCATCGTCCAGGTCCTGTAG) were used 

as the reverse primer. In silico PCR was performed on each of the genomic 

sequences using an in-house Perl script 

(https://github.com/egonozer/in_silico_pcr) allowing for up to 1 base mismatch 

and 1 base insertion or deletion in each primer sequence. When primer 
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sequences were found on separate contigs, sequences from each primer to the 

respective contig ends were manually joined into a single sequence. The 

resulting “amplicon” nucleotide sequences were aligned using BLAST against the 

21 O-antigen locus nucleotide sequences (Raymond, et al. 2002) to assign each 

locus to one of the eleven possible O-antigen biosynthetic locus groups. When 

the length of any reference O-antigen locus aligned to the “amplicon” sequence 

was less than 90%, BLAST was used to align the whole genome sequence 

assemblies against the representative O-antigen locus nucleotide sequences to 

identify the locus group type. This might occur, for example, in cases where the 

O-antigen locus spanned multiple contigs such that only the locus ends could be 

identified by in silico PCR.  

Markers for specific genomic islands were identified by in silico PCR using 

primers described by Morales-Espinosa et al. (Morales-Espinosa, et al. 2012). 

Up to 1 base mismatch and 1 base insertion or deletion per primer was allowed.  

An in silico PCR result was considered positive if both primer sequences were 

found on opposite strands on the same contig or if both primer sequences were 

found on separate contigs, but the distance from the primer sequences to the 

ends of the contigs each did not exceed the expected amplicon size. 

 

Variant detection and phylogenetic analyses 

The kSNP v2.1.2 program (Gardner and Hall 2013) was used to identify single 

nucleotide polymorphisms (SNPs) in the core genome. Briefly, kSNP identifies 

variants among genomes by separating assemblies into k-mers, and identifying 
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k-mers sharing most sequence between isolates but differ by a single nucleotide. 

For the purposes of this study, the core genome variants were defined as loci 

found in at least 95% (i.e. ³702) of the isolates with a variant in at least one of 

the isolates at that locus. This definition was chosen to minimize the impact on 

the core genome of a small number of isolates that might have undergone core 

gene deletion or for which sequencing or assembly errors may have resulted in 

omission of genetic sequence. All k-mers 21 bp in length were examined, as 

selected by the Kchooser script included with kSNP.  

 We chose kSNP for identifying core genome variants and performing 

phylogenetic analyses for several reasons. First, our data set consisted of 

assembled genome sequences deposited at NCBI, so we could not use methods 

to identify variants based on alignments of sequencing reads to a reference. 

Second, the number of genomes analyzed exceeds the computational limits of 

other software programs used to align and call variants in assembled genomes. 

Third, given the variability in assembly qualities and completeness of the 

genomes used, we thought it important for our analyses to allow some flexibility 

in the core genome definition to include variants in regions that were present in 

the large majority of the included isolate assemblies but not necessarily found in 

every genome. Most available core genome alignment programs will only 

generate alignments of regions present in 100% of the included isolates. As 

kSNP can identify single nucleotide variants in assembled genomes, is 

computationally scalable to analyze large datasets, and allows flexibility in core 
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 10 

genome definition, we chose to use this software for variant detection and 

phylogenetic analyses. 

For secondary validation of the tree structures generated using kSNP, a 

whole-genome alignment method against a reference sequence was used. Each 

isolate’s genome sequence was aligned to the sequence of P. aeruginosa PA14 

(accession # CP000438.1) using nucmer, and SNPs were called from the 

alignment using show-snps. Both programs are part of the MUMmer software 

suite version 3.23 (Kurtz, et al. 2004). A custom Perl script, 

nucmer_snp_to_matrix.pl, was then used to filter and arrange SNP loci into a 

sequence matrix. Any variants against the reference sequence that were within 

10 bases of each other or within 5 bases of a contig end were omitted.  

FastTreeMP v2.1.7 (Price, et al. 2010) was used to generate a maximum 

likelihood phylogenetic tree. Phylogenetic trees in this study were visualized 

using either FigTree v1.4.3 (Rambaut) or Evolview (He, et al. 2016; Zhang, et al. 

2012) for different representations and annotations.  

 

Accessory genome characterization 

 The core genome of the 739 P. aeruginosa isolate collection was 

determined using Spine v0.1.2 (Ozer, et al. 2014).  Sequence was considered 

part of the core genome if it was present in at least 703, or 95%, of the isolates 

with at least 85% sequence identity. The accessory genome of each input isolate 

was determined using AGEnt v0.1.3 (Ozer, et al. 2014). ClustAGE was used to 

align and group the accessory genomic sequences of all isolates and identify the 
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distribution of accessory genomic elements (AGEs) among the isolates (Ozer 

2018). Briefly, AGEs were grouped together by combining accessory sequences 

from all genomes. Then, starting with the largest AGE, now identified as a 

representative “bin”, AGE sequences from all other isolates were aligned to the 

bin using blastn (Altschul, et al. 1990). All AGEs aligning to the bin with at least 

85% sequence identity and an E-value of at most 1x10-6 were considered 

“binned” with the representative AGE bin and removed from the pool of potential 

bins. If only a fraction of an AGE aligned to a particular bin sequence, the 

unaligned portion of the AGE was returned to the pool of potential bin 

sequences. The next longest remaining AGE or partial AGE sequence in the bin 

pool was then used as a blast query sequence against the database of all AGE 

sequences. This process was continued until all AGEs had either been binned 

with a representative AGE or served as a bin representative themselves or were 

less than 200 bp in length. As AGEs are often mosaic in composition between 

isolates, alignments against each bin representative were then parsed to further 

subdivide bins into “subelements” at positions along the bin sequence where 

either the number or identities of genomes from which aligning AGEs were found 

changed. In this way, a bin could be divided into subelements ranging in size 

from 1 bp up to the length of the representative bin AGE, with each subelement 

sequence identified as a continuous sequence element present in the accessory 

genome of at least one input isolate. We chose to use the 

Spine/AGEnt/ClustAGE approach to characterize the accessory genome of this 

population as it is well-suited for identifying commonalities and differences in 
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genomes from large populations in coding and non-coding sequences alike 

without a priori knowledge of accessory element sequences. 

 To assess relative amounts of shared accessory genome sequence 

between pairs of isolates, we adapted an approach described by Shapiro et al. 

(Shapiro, et al. 2012). Briefly, the Bray-Curtis distance (d) of the accessory 

genome of each pair of isolates was calculated using sizes of shared AGEs at 

least 100 bp in length. These distances were used as input to Phylip v3.695 

(http://evolution.gs.washington.edu/phylip) to produce a neighbor-joining tree. 

The neighbor-joining tree was visualized with FigTree v1.4.2 (Rambaut), and the 

heatmap from the inverse of the Bray-Curtis distances (1 – d) was visualized with 

R v3.4.1 (R Core Team 2016) using the ComplexHeatmap package v1.15.1 (Gu, 

et al. 2016). Multiple correspondence analysis of AGE distribution was performed 

using the MCA function of the R package FactoMineR v1.41 (Lê, et al. 2008) and 

visualized using the factoextra package v1.0.5. Pangenome sizes and new 

genome sizes for random permutations of genomes were calculated as 

previously described (Ozer, et al. 2014).   

 

Recombination analysis 

 To examine patterns of core genome recombination within the population, 

a 95% core genome multiple sequence alignment was constructed based on the 

kSNP analysis results. Briefly, we sought to convert the kSNP program output, 

which is a matrix of variant positions and bases in each isolate, into a multiple 

sequence alignment representing the distribution of SNVs within a reference 
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genome. We selected PA14 to serve as the reference sequence representing 

each of the 739 isolates. Then, for each genome, we used information from the 

kSNP matrix to change bases at core genome positions in PA14 to match the 

base found at that position in the non-PA14 isolate sequence. The result was an 

alignment of 739 sequences, each sequence the length of the PA14 whole 

genome and each representing the sequence of one of the 739 studied genomes 

at core genome sites. ClonalFrameML v1.11 (Didelot and Wilson 2015) was used 

to reconstruct recombination events in the full core genome multiple sequence 

alignment of all 739 isolates, as well as separately among isolates in each of the 

major groups. The likely origin of each recombination event detected by 

ClonalFrameML was inferred using similar methods as previously described 

(Cao, et al. 2015; Didelot, et al. 2009; Didelot, et al. 2011; Sheppard, et al. 2013) 

and briefly summarized below. The sequence imported in each recombination 

event was compared to the imputed sequences of all nodes and leaves in 

phylogenetic trees of both the recipient group and other non-recipient groups to 

determine the minimum genetic distance. For recombination events on terminal 

branches, comparisons to the leaf under that branch were excluded, whereas for 

recombination events on non-terminal nodes, all comparisons to nodes and 

leaves below the recombination event were also excluded. If a recombination 

event was found to have a minimum genetic distance to sequences in the 

recipient group below the threshold value, but minimum distance to all non-

recipient groups’ sequences above the threshold value, the importation event 

was inferred to have originated within the recipient group. Conversely, if the 
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minimum distance to the recipient group was above the threshold, but the 

minimum distance to one of the non-recipient groups was below the threshold, 

the recombination event was inferred to have originated from the non-recipient 

group. If no group’s minimum distance was below the threshold, the 

recombination event’s source was inferred to be external to the population, and if 

more than one group’s minimum distance was below the threshold, the 

recombination event’s origin was classified as ambiguous. Based on the 

estimated mean divergence of imported DNA sequences for the population, i.e. 

the parameter "nu" derived by ClonalFrameML, a threshold distance of 0.002 

was chosen. Recombination flow diagrams were produced using GraphViz 

(http://www.graphviz.org). 

 To count polymorphic and fixed variants within and between groups of 

isolates and perform the McDonald-Kreitman test for each gene, a custom Perl 

script, MKT_per_gene.pl, was developed. Individual gene alignments were 

extracted from the whole-genome alignment described above. Polymorphisms 

found in less than 5% of all genomes were ignored. A variant was considered 

fixed if present in at least 98% of genomes in a group. 

 

Admixture analysis 

 The core genome multiple alignment described above was also used for 

admixture analysis. Hierarchical clustering was performed using the hierBAPS 

module included with BAPS v6.0 (Cheng, et al. 2013) with a maximum cluster 

number (K) of 35. The results of the first level of clustering were then used as 
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input for admixture analysis in BAPS v6.0 using default parameters (Corander 

and Marttinen 2006; Corander, et al. 2008). A gene flow diagram was produced 

using GraphViz (http://www.graphviz.org). 

 

Average nucleotide identity 

 Average pairwise nucleotide identity (ANI) was calculated for each pair of 

genome sequences as previously described (Goris, et al. 2007). For each 

combination of genome sequences, both reciprocal ANI values were determined.  

 

Statistical analyses 

 Exact test of goodness-of-fit analyses with Holm corrections for multiple 

observations were performed in R v3.4.1 (R Core Team 2016).  

 

Results: 

Most P. aeruginosa isolates segregate into two large phylogenetic groups 

Genomic sequences of 730 P. aeruginosa isolates representing all complete and 

draft genome sequences available as of February 3, 2015 were downloaded from 

the NCBI FTP server. When available, relevant metadata for each sequenced 

isolate was collected (Supplemental Table 1).  The number of genomic 

sequences from isolates identified as clinical in origin (n=615) far exceeded the 

number identified as environmental in origin (n=57). To increase the 

representation of environmental isolates in the data set, we sequenced 9 

additional isolates of P. aeruginosa previously collected from environmental 
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sources (Feltman, et al. 2001) (Supplemental Table 1). The total set of 

assemblies ranged in size from 5,502 kb to 7,586 kb (median 6,644 kb) and 

consisted of 1 to 2,797 contigs per assembly (median 98 contigs).  GC content 

ranged from 65.19% to 66.87% (median 66.20%).   

 Next, core genome single nucleotide variants (SNVs) were identified. Core 

genome single nucleotide variants (SNVs), defined as loci with sequence found 

in at least 95% (³ 703) of the 739 isolates and with a variable base in at least one 

genome, were identified using kSNP v2.1.2 (Gardner and Hall 2013). kSNP uses 

a reference-free alignment approach to identify SNV differences between 

genomic sequences by dividing the genomes into equal length k-mers (all 

possible stretches of k-consecutive nucleotides) and aligning k-mers from 

different genome sequences to identify inter-isolate base differences. This 

approach has the advantage of not requiring multiple sequence alignments to a 

single reference genome, which allows for rapid comparisons of large numbers of 

genomes. The core genome phylogenetic tree was based on 368,212 core SNV 

loci identified by kSNP (Figure 1). As has been observed by others (Freschi, et 

al. 2015; Freschi, et al. 2019; Kos, et al. 2015), the large majority of isolates 

(98%) fell into one of two major groups designated here as “Group A” (541 

isolates) or “Group B” (186 isolates).  Most of the remaining isolates cluster onto 

a third branch of the tree, “Group C” (11 isolates), with some of these isolates 

demonstrating considerable core genome phylogenetic distance from the Group 

A and Group B isolates. Isolates in Group C were further subdivided into two 

smaller subclades, Group C1 (5 isolates) and the more distant Group C2 (5 
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isolates), with one isolate, CF_PA39, falling between the two groups.  The 

commonly used lab strains PAO1 and PA14 are found in Group A and Group B, 

respectively (Figure 1).  PA7, which has previously been described as 

phylogenetically distinct from most other P. aeruginosa isolates (Roy, et al. 

2010), is found in Group C2.   

To further support the structure of the phylogenetic tree generated by the 

reference-free kSNP analysis, we used a secondary reference-alignment-based 

approach. Assemblies were individually aligned to the PA14 genomic sequence 

using nucmer (Kurtz, et al. 2004), and all loci with a variant against PA14 in 

which a nucleotide position was present in at least 95% of the isolates were 

combined in a sequence matrix containing 502,674 core genome variant loci. 

The clade structure of the tree produced from this core genome SNV alignment 

matrix was similar to the tree generated by kSNP (Supplemental Figure 1), 

supporting the accuracy of the kSNP tree. 

Next, the impact of recombination on the core genome phylogenetic tree 

was examined using ClonalFrameML to identify potential recombination events 

and reconstruct the phylogeny with corrected branch lengths. The resulting 

corrected core genome phylogenetic tree showed decreased branch lengths, but 

the separation of the population into distinct groups remained unchanged 

(Supplemental Figure 2; note scale bar), indicating that the phylogenetic 

separation of isolates into Groups A and B was not an artifact of recombination.  
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Core genome recombination flow indicates a barrier to genetic exchange 

between Group A and Group B isolates 

 The differentiation of Group A isolates from Group B isolates could result 

from the two groups evolving in distinct ecological niches or because of physical 

and/or genetic barriers that limit recombination between these groups (Cadillo-

Quiroz, et al. 2012; Cohan 2002a; Shapiro, et al. 2012).  We therefore 

investigated patterns of core genome recombination among the 739 isolates. 

First, we used the results of the ClonalFrameML analysis to quantify rates of 

recombination.  In the entire population, the relative rate of recombination was 

estimated to be about 4-fold less than the mutation rate (R/theta = 0.27). 

However, because each recombination event can convey multiple nucleotide 

changes, recombination was estimated to contribute more than 2.5-fold more 

diversity to the population than mutation (r/m = 2.53, which is the product of 

R/theta, the mean recombination length delta and the mean divergence of 

imports nu) (Table 1). Examination of recombination in Group A strains only 

showed a higher relative rate of recombination versus mutation than the 

population as a whole (R/theta = 0.55) with an overall greater effect of 

recombination on diversity (r/m =3.69). By contrast, the relative recombination 

rate was found to be lower within the Group B isolates (R/theta = 0.17), but due 

to a ten-fold higher average length of recombinant regions (delta), the relative 

contribution of recombination to isolate diversification was much higher in the 

Group B isolates (r/m = 8.43). Repeated analyses of random subsets of isolates 

from each group confirmed the differences in recombination parameters between 
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the groups (Supplemental Figure 3). These findings indicate that core genome 

recombination events are quite common in P. aeruginosa but that the nature of 

these recombination events differ between Group A and Group B isolates. 

 To further examine whether bacteria in Group A and Group B were 

evolutionarily independent lineages (i.e. that inter-group recombination events 

are relatively rare compared to intra-group recombination events), we examined 

the estimated sources of recombinant sequence. To infer likely recombinant 

region origins, genetic distances were calculated between recombination event 

sequences and their corresponding pre-recombination sequences as 

reconstructed by ClonalFrameML in each group of isolates. In Group A isolates, 

13,489 (75.0%) of 17,993 recombination events likely originated from within 

Group A but only 150 events (0.8%) originated from Group B (Figure 2A). 

Similarly, in Group B isolates, 1,219 (74.6%) of 1,635 recombination events likely 

originated from within Group B but only 20 events (1.2%) originated from Group 

A (Figure 2B). Fewer than 0.5% of recombination events in either Group A or 

Group B isolates were attributed to a source among Group C1 or Group C2. A 

total of 10.7% and 6.1% of recombination events in Group A and Group B 

isolates, respectively, were sequences that likely originated from Groups A, B, 

C1, or C2, but the source could not be unambiguously assigned to a single 

group. The remaining recombination events in each group were predicted to be 

from an “external” origin (i.e. from a source genome outside of Groups A, B, C1, 

or C2). A limitation of this analysis is that the relatively small number of isolates 

in Group C1 and Group C2 included in this population may have precluded an 
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accurate estimation of the true overall diversity of this group, potentially causing 

some recombinant sequences from these groups to be attributed to an external 

donor source. Recent reports have identified additional isolates that belong to the 

C subgroups (Freschi, et al. 2019), which should allow future studies to better 

analyze their genomic features.  The overall finding of a strong bias towards 

intra-group recombination relative to inter-group recombination suggests a barrier 

to cross-group exchange of genetic material (Ansari and Didelot 2014; Didelot, et 

al. 2010), which is consistent with the notion that Groups A and B inhabit distinct 

ecological niches or that a genetic barrier to recombination exists between them.  

 To examine the relative distribution of recombinant sequence between 

major groups in the population, we used BAPS (Corander and Marttinen 2006; 

Corander, et al. 2008) to perform hierarchical clustering and admixture analysis 

based on core genome SNV loci. Admixture here refers to a measure of shared 

genetic ancestry between isolates. Hierarchical clustering separated the isolates 

into 4 clusters corresponding to Groups A, B, C1, and C2, with limited admixture 

and gene flow between clusters (Supplemental Figures 4A and 4B). An exception 

within Group B was a closely related set of four isolates (AZPAE15041, 

AZPAE14888, AZPAE14878, and BL03) that were estimated to be admixed with 

approximately 40% of their sequences attributable to Group A (Supplemental 

Figure 4A, Figure 1). Interestingly, these four isolates had no clear connections 

with each other by geographic or clinical isolation source (Supplemental Table 1).  

The only other isolate with a similar level of admixture was strain PS75, which in 

the core genome phylogenetic analysis branched midway between the two major 
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Groups A and B but was distinct from the Group C branch (Figure 1). The 

provenance of this isolate could not be derived from publicly available 

information. Although there are other predicted core genome admixture events 

between isolates within the major clades, admixed isolates represent a small 

minority of the population. The overall limited amounts of admixture between 

Group A and Group B isolates supports the possibility that these groups may be 

independent lineages and consistent with the evolutionary concept of distinct 

species. 

 

Identification of candidate core genes that may be niche-adaptive 

Fixed differences in core gene loci may point to positive selection in 

distinct ecological niches. These variations may arise sequentially and become 

fixed as strains adapt to a new niche or as the result of population-wide gene-

specific sweeps mediated by core genome recombination. We examined the core 

genomes of Group A and B isolates for evidence of group-specific fixed variants. 

From among 369,282 core genome SNV loci, we identified 240 dimorphic SNV 

loci with one allele present in at least 98% of Group A isolates and a different 

allele present in at least 98% of the Group B isolates (Supplemental Table 2). 

Interestingly, the group-defining dimorphic nucleotide positions are localized 

primarily to one half of the P. aeruginosa chromosome (Figure 3).  Of these 240 

dimorphic SNV loci, 213 are located within a total of 89 protein-coding genes; 48 

SNVs in 34 genes are predicted to encode non-synonymous variations. To 

examine the likelihood that the dimorphic SNV loci may have been identified by 
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chance, each of the isolates in Groups A and B were randomly assigned to either 

Group AN (541 isolates) or Group BN (186 isolates). The number of SNV loci that 

were dimorphic in Groups AN and BN were then counted. This analysis was 

repeated for 1000 random permutations of isolates into the two groups and in 

each permutation, 0 dimorphic SNV loci were identified. This indicates that the 

fixed dimorphic SNVs are unlikely to have occurred by chance.   

Assigning putative functional categories to each of the dimorphic-SNV-

containing genes using the Clusters of Orthologous Groups of proteins (COG) 

database (Tatusov, et al. 1997; Tatusov, et al. 2001) showed that many of the 

genes containing non-synonymous differentially fixed mutations were predicted 

to encode proteins involved in signal transduction (e.g. two-component systems 

and transcriptional regulators) or metabolic functions (Supplemental Figure 5B, 

Supplemental Table 2), perhaps indicating a fine-tuning of signaling and 

metabolic capacities to meet the requirements of different niches. Evaluation of 

fixed vs. polymorphic variants using the McDonald-Kreitman test (McDonald and 

Kreitman 1991) revealed that several of the 34 genes with dimorphic SNVs 

predicted to encode non-synonymous variants had neutrality index values below 

1, suggesting positive selective pressure (Rand and Kann 1996).  However none 

of the differences were statistically significant (Supplemental Table 3). The lack 

of significance is likely secondary to the low numbers of variants causing reduced 

statistical power, but we cannot exclude the possibility that substantial selective 

pressures may not differ within vs. between groups at the level of individual 

genes. Despite this, the presence and characteristics of genetic loci containing 
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dimorphic SNPs could suggest a trend towards fixation of particular variants 

within the groups, potentially reflecting adaptation of Group A and B isolates to 

their respective ecological niches. 

 

Accessory genome differences support a barrier to genetic exchange between 

Group A and Group B isolates 

Similar to core genome recombination, horizontal transfer of accessory genomic 

elements may also be limited in strains inhabiting distinct ecological niches.  For 

this reason, we next examined the distribution of accessory genomic elements in 

the two large groups of P. aeruginosa. Characteristics of the core-, accessory-, 

and pangenomes of the sequence collection are shown in Table 2. Analysis of 

the pangenome and novel sequences identified in each additional genome 

suggests that, similar to the population as a whole, the pangenome of P. 

aeruginosa Groups A and B are open (Supplemental Figure 6) (Tettelin, et al. 

2008). A total of 7,239 unique contiguous AGE sequences at least 200 bp in 

length were identified; these were further subdivided into 68,830 discrete AGE 

subelements.  Multiple correspondence analysis of the 21,453 AGE subelements 

at least 100 bp in length showed that the accessory genomes of Group A, B, C1, 

and C2 isolates are relatively distinct (Figure 4A). Bray-Curtis distances based on 

presence or absence in each isolate of discrete accessory sequences at least 

100 bp in length were calculated, used to produce a neighbor-joining tree, and 

visualized as a heat map of isolate-isolate accessory genome content similarity 

(Figure 4B). This analysis showed that the accessory genomes of Group A 
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isolates were overall more similar to each other than to those of Group B 

isolates, and vice versa. Similarly, an analysis of the pangenome sizes of 1000 

random subsets of genomes from each group showed that the average 

pangenome size of isolates from Groups A and B together was significantly 

larger than the average pangenome size of isolates within either Group A or 

Group B alone (Supplemental Figure 7). Together, these results suggest that 

Group A and Group B isolates have acquired a somewhat different albeit 

overlapping set of accessory genome sequences. 

 We next examined the distribution of previously characterized genomic 

islands (GIs) in the P. aeruginosa groups.  As GI sequences can be highly 

mosaic and fragmentary between isolates, we focused on subsets of these GIs.  

We used validated PCR primer sequences and an in-silico “PCR amplification” 

approach to detect portions of the GIs PAGI-1, PAGI-2, PAGI-3, PAGI-4, PAPI-1, 

PAPI-2, and pKLC102 (Morales-Espinosa, et al. 2012). Consistent with the Bray-

Curtis analysis, most GI sequences were identified in members of both Group A 

and Group B, although portions of PAGI-4, PAPI-1, PAPI-2, and pKLC102 were 

found to have a statistically significant overabundance in one group or the other 

(Supplemental Table 4).  These results demonstrate that many of the 

characterized P. aeruginosa GIs are found in isolates from both Groups A and B 

but that some are not evenly distributed between the groups.  This may indicate 

that some GIs are preferentially lost or gained in one ecological niche or the 

other and/or that genetic barriers exist such that some GIs are more easily 

transferred between isolates within a group than across groups.  

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/advance-article-abstract/doi/10.1093/gbe/evz119/5512492 by U

niversity of W
arw

ick user on 18 June 2019



 25 

 O-antigen polysaccharides, which comprise the terminal portion of 

lipopolysaccharide (Rocchetta, et al. 1999), are common receptors for phages 

that infect P. aeruginosa and therefore are under strong selection (Temple, et al. 

1986). Although nearly every isolate of P. aeruginosa has an O-antigen 

biosynthesis island at the same genomic locus, these islands vary significantly in 

the number and types of genes they carry (Kung, et al. 2010; Raymond, et al. 

2002). We therefore examined the genes at the O-antigen biosynthetic locus in 

each isolate. Many of the O-antigen biosynthesis islands differed significantly in 

their incidence in one phylogenetic group relative to the other (Figure 5A, 

Supplemental Table 5). In particular, the predominant O-antigen biosynthetic 

island type, O6, was found exclusively in Group A isolates, whereas the O11 

island predominated in Group B isolates.  These findings suggest that different 

O-antigen types may provide differential selection in distinct niches inhabited by 

Group A and Group B isolates. 

 

Identification of candidate accessory genes that may provide niche-adaptive 

characteristics   

Bacteria can adapt to new niches following horizontal gene transfer of an 

adaptive gene or genes (Cohan and Koeppel 2008). However, genes adaptive 

for one niche may confer a cost when transferred into another niche and can thus 

be recognized by their nearly universal presence in isolates from one niche but 

not the other (Cohan 1994). Our examination of characterized GIs indicated that 

portions of some islands were over-represented in one group or the other 
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(Supplemental Table 4).  To further investigate this in an unbiased manner, we 

applied filters to detect all AGEs found in at least 90% of isolates in Group A and 

no more than 10% of isolates in Group B, and vice versa. From a total of all 

68,830 AGEs at least 1 bp in length, 11 contiguous groups of AGEs were 

identified as being predominantly found in Group A isolates. These 11 AGE 

groups contained portions of 8 different genes, including genes predicted to 

encode a pilus assembly chaperone and components of an ABC transporter 

(Supplemental Table 6).  A total of 26 complete or partial genes in 16 AGE 

groups were found predominantly in Group B isolates.  These included genes 

predicted to encode a protein disulfide isomerase, a potassium uptake protein, a 

nucleoside-binding outer membrane protein, and a zinc-binding oxioreductase 

(Supplemental Table 6). As mentioned, these genes could potentially play a role 

in allowing P. aeruginosa to better persist is specific environmental niches.  In 

this regard, it is interesting that one of the AGEs predominant in Group B 

isolates, PAgrpB_7, consists of the GI RGP32, which had been previously 

described to contain stress-associated genes such as the flavodoxin-encoding 

gene fldP (Moyano, et al. 2014). The cyanobacterial flavodoxin in this island has 

been shown to promote P. aeruginosa survival in mammalian macrophages and 

increase virulence in Drosophila infections.  

Analyses of 1000 random reshufflings of the isolates into two groups 

containing 541 and 186 isolates did not identify any AGEs that were similarly 

predominant in one or the other random group. Similarly, no group-predominant 
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AGEs were found following 1000 random reshufflings of isolates into two groups 

containing balanced numbers of 360 isolates each.  

These results identify several group-associated accessory genes. 

Although it is possible that one or more of these genes provides a niche-specific 

selective advantage to isolates in that Group, the non-random association of 

these genes with isolates in a particular Group could also be the result of early 

acquisition and subsequent propagation after niche specialization independent of 

any specific evolutionary advantage or barriers to gene flow between them.   

The preceding analysis also identified the exoS and exoU genes as being 

highly segregated between Groups A and B.  These genes encode effector 

proteins of the P. aeruginosa type III secretion system.  It has been previously 

reported that nearly every isolate of P. aeruginosa has either the exoS gene or 

the exoU gene, with only rare isolates containing both genes or neither gene 

(Bradbury, et al. 2010; Feltman, et al. 2001; Garey, et al. 2008; Lomholt, et al. 

2001; Pirnay, et al. 2009). Of note, 528 (98%) of the 541 Group A isolates 

contained exoS but not exoU, and 176 (95%) of 186 Group B isolates contained 

exoU but not exoS (Figure 5A, Supplemental Table 5). Performing in silico PCR 

using primer sequences against the middle portion of the exoU gene (bases 

1098 – 1531) yielded identical findings as those shown for the full exoU gene in 

Supplemental Table 5.  These results indicate exoS and exoU discriminate 

Group A and Group B isolates with a high degree of accuracy and suggests the 

genes could provide a fitness advantage in the respective ecological niches they 

inhabit. 
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We next examined the genetic context in which exoU and exoS occurred.  

As the exoU gene is present in the genomic island PAPI-2 (He, et al. 2004; 

Morales-Espinosa, et al. 2012), we examined the distribution of other portions of 

PAPI-2 in the isolates. Of the other two portions of PAPI-2 evaluated with primer 

sets, one (RS07-RS08) showed a statistically significant overabundance in 

Group B (86.0%) compared to Group A (46.6%) but this was not to the same 

degree as the exoU gene (95.2% vs. 1.8%) (Supplemental Table 4).  The other 

portion of PAPI-2 screened (xerC) was equally distributed between isolates in the 

two groups. Thus, both Group A and Group B isolates contained portions of 

PAPI-2, but the exoU gene itself was largely restricted to Group B isolates. Of the 

10 exoS+ Group A isolates that also contained exoU (Supplemental Table 1), 9 

had exoU and its chaperone gene spcU located immediately upstream (2,064 

and 414 bp, respectively) of conserved core gene PA0988, the same location in 

which they are found in the Group B strain PA14. In the 10th isolate (ATCC 

25324), the exoU and spcU genes could not be definitively localized in the 

chromosome due to their presence on extremely short contigs in the assembly. 

We next examined the location of the exoS gene by performing in silico PCR 

using primers spanning the two genes immediately flanking the exoS gene (the 

exoS chaperone gene spcS and the hypothetical protein gene PA3840).  In all 

Group A isolates and in the single Group B isolate that contained the exoS gene 

(AZPAE14404), it was found in this context. In all other Group B isolates, both 

flanking genes were present but the entire exoS gene was absent. The presence 

of the adjacent exoS chaperone gene in all P. aeruginosa strains of both groups 
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supports prior hypotheses that the exoS gene predated acquisition of exoU in P. 

aeruginosa and was lost due to a targeted deletion event (Kulasekara, et al. 

2006).  

Interestingly, several of the 10 exoU+/exoS+ isolates in Group A were 

phylogenetically distinct from each other (Figure 5A). These findings are 

consistent with either the rare acquisition of exoU by a few Group A isolates or 

the general loss of exoU from nearly all Group A isolates. As mentioned above, a 

closely related set of four Group B isolates (AZPAE15041, AZPAE14888, 

AZPAE14878, and BL03) were admixed with approximately 40% of their 

sequences attributable to Group A. Interestingly, these four isolates lacked both 

the exoS and exoU genes (Figure 5A). These were also the only four isolates in 

the population that had O13 / O14-type O-antigen biosynthesis loci (Figure 5A). 

These isolates may represent a lineage evolving from an ancestor that either lost 

or failed to acquire the exoU gene, perhaps altering their niche specificity and 

again providing opportunities for recombination with exoS+ isolates.  

 

Intergroup nucleotide identity varies more than intragroup nucleotide identity 

 The preceding results suggest that Group A and Group B isolates 

represent two lineages but it is unclear how distinct these lineages are (Wiley 

and Wiley 1981). Although the criteria for defining bacterial species are evolving 

(Doolittle and Papke 2006; Krause and Whitaker 2015), one proposed metric is 

average nucleotide identity (ANI) of genome sequence pairs. A cutoff of 95 - 96% 

ANI was found to correspond to a 70% DNA-DNA hybridization threshold 
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traditionally used for species delineation (Goris, et al. 2007; Richter and 

Rossello-Mora 2009). To examine the nucleotide relatedness of Group A and 

Group B isolates, the ANI values of the 739 isolates were calculated for every 

combination of pairs of genome sequences and their reciprocals. This showed 

that the average ANI among all Group A and all Group B isolates was 99.3% and 

99.2%, respectively, and that the ANI of isolates between Groups A and B was 

slightly lower at 98.76% (Table 3). Group C1 ANI values against Group A or 

Group B isolates were lower still at 98.2% and 98.0%, respectively. Group C2 

isolates, representing the PA7-like outlier isolates, shared just 93.49% ANI with 

Group A isolates, 93.51% ANI with Group B isolates, and 93.38% ANI with Group 

C1 isolates. These results suggest that Groups A, B, and C1 would not be 

considered separate species by commonly-accepted ANI criteria, although the 

evolutionary species concept suggests they are independent lineages. The 

classification of PA7-like Group C2 isolates as belonging to the same species as 

the other groups in P. aeruginosa may warrant further discussion.   

 

Group A and Group B isolates are associated with somewhat different 

demographic characteristics  

 As mentioned, the separation of most P. aeruginosa isolates into one of 

two large phylogenetic groups suggests the possibility that these two populations 

may inhabit two different niches (Cohan 2002b). To support this conjecture, we 

examined the sources of the isolates.  Isolates did not group based on 

continental and hemispheric origin (Figure 5B, Supplemental Table 5). Although 
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isolates of clinical or environmental origin were found in both major branches of 

the tree, a significantly greater proportion of environmental isolates was observed 

in Group A than in Group B (p < 0.01; Figure 5C, Supplemental Table 5).  

Furthermore, differentiation of environmental isolates by specific source (e.g. 

equipment, vegetation, soil, water) showed no significant predominance of any 

sources in one group over the other (Figure 5C, Supplemental Table 5).  For 

isolates identified as originating from clinical sources, we first separated isolates 

into cystic fibrosis (“CF”) and other clinical sources (“non-CF”).  We made this 

distinction because some reports have suggested that P. aeruginosa isolates 

from patients with CF are phenotypically and genotypically distinct from other P. 

aeruginosa isolates (Oliver, et al. 2000; Tummler, et al. 1997; van Mansfeld, et 

al. 2010).  Although non-CF clinical isolates were found in both major branches 

of the phylogenetic tree, all but 3 of the 115 isolates cultured from CF patients 

were in Group A (Figure 5D, Supplemental Table 5). This statistically significant 

predominance (p < 1 x 10-10) of CF isolates in Group A was maintained even 

when all 48 isolates belonging to the Liverpool Epidemic Strain (LES) clonal 

group, a CF epidemic strain (Scott and Pitt 2004), were removed (Supplemental 

Table 7). Among the non-CF clinical isolates, those cultured from eye, ear, or 

nose sources were predominantly Group B (Figure 5D, Supplemental Table 5). In 

this group of isolates, the majority (34 of 40) had been cultured from eye 

infections (Supplemental Table 1). Isolates from other clinical sources were more 

evenly distributed between Groups A and B. These findings suggest that CF 

patients may be more likely to acquire their P. aeruginosa isolates from 
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reservoirs of Group A isolates than Group B isolates.  Alternatively, Group B 

isolates may be less fit to colonize and infect the airways of CF patients than 

Group A isolates. Eye infections represent an inverse situation in which isolates 

are more likely acquired from Group B reservoirs or in which Group B isolates 

are better able to cause these infections. 

 

Discussion 

We used the whole-genome sequences of 739 P. aeruginosa isolates to 

confirm previous reports that the population structure of P. aeruginosa consists of 

two large clades and one or more smaller clades (Freschi, et al. 2018; Freschi, et 

al. 2015; Freschi, et al. 2019; Hilker, et al. 2015; Marvig, et al. 2015; Stewart, et 

al. 2011; Williams, et al. 2015). Despite earlier observations of this population 

structure, the underlying reasons for this distinct segregation in P. aeruginosa 

have not previously been extensively explored. One explanation for the striking 

separation of the two large clades comprising Groups A and B is that the bacteria 

in these groups inhabit distinct ecological niches. Consistent with this notion is 

that several clusters of core genome SNPs are characteristic of Group A or 

Group B.  Similar, although less marked, differences between the two major 

groups were also seen in the accessory genome.  This analysis identified several 

genes that may be contributing to the ability of bacteria in each group to better 

persist in different ecological niches, the most noteworthy being exoS and exoU.  

As the two groups diverged through adaptation to different niches, barriers would 

have progressively limited inter-group but not intra-group genetic exchange. 
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Evidence of decreased intra-group recombination was indeed observed between 

Group A and Group B isolates indicating they are independent lineages that fit an 

evolutionary species concept.  Although predominantly exoS+ Group A strains 

and predominantly exoU+ Group B strains are found to be phylogenetically 

divergent, the genetic differences between the two groups did not meet ANI 

criteria for distinct species.  The same, however, cannot be said of the Group C2 

clade; although ANI values are not sufficient on their own to delineate species, 

these isolates are quite distinct, and future studies should focus on whether they 

should remain within the P. aeruginosa species. 

Genetic isolation is evidenced by relatively little gene flow between Group 

A and Group B in the core genome. We observed that just 14 – 19% of core 

genome recombination events could be attributed to sources outside of each 

major group (Figure 2). Previous studies have found that P. aeruginosa is 

characterized by a low overall recombination rate within the core genome--only 

one-fifth the rate of mutation (Dettman, et al. 2014)--but it has also been shown 

through the distribution of syntenic SNPs that free recombination occurs between 

the core genomes of major clones (Hilker, et al. 2015). Consistent with our 

findings, it has been reported that the characteristics of syntenic SNP haplotypes 

varied depending on whether interclonal or intraclonal isolate pairs were 

compared (Losada and Tummler 2016). Our results suggest that the groups have 

diverged to the extent that sequence differences hinder homologous 

recombination, that genetic barriers to recombination (such as restriction-
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modification systems) exist between the two groups, or that distinct ecological 

niches provide a physical barrier to gene transfer.  

Our finding that patterns of accessory genome content of isolates within 

groups are overall more similar than between groups is further evidence for 

differentiation between Groups A and B. A study of regions of genomic plasticity 

(RGPs) among 40 P. aeruginosa isolates also demonstrated distinct accessory 

genome compositions between the two major groups (Freschi, et al. 2018). Much 

of the accessory genome of P. aeruginosa is composed of horizontally 

transferred elements acquired from environmental reservoirs (Kung, et al. 2010), 

and differences in accessory genome content suggest exposure to distinct 

reservoirs. A second possible interpretation is that genetic barriers limit efficient 

horizontal transfer of specific accessory elements into one group but not the 

other or between groups. 

Our analysis identified a number of core gene alleles and accessory 

genes that are discriminatory for Group A and B isolates. Since these genes and 

alleles are relatively exclusive to one group or the other, they are candidates for 

niche-adaptive genes, although McDonald-Kreitman testing did not show 

statistically significant evidence of positive selection. Arguably, the most 

interesting of the group discriminatory accessory genes are exoS and exoU. That 

these genes could be niche-adaptive has been suggested (Pirnay, et al. 2009; 

Wolfgang, et al. 2003). Previous studies have also suggested a phylogenetic 

separation between P. aeruginosa isolates containing these two different type III 

effector genes (Selezska, et al. 2012; Wiehlmann, et al. 2007), which is 
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confirmed by our study. Previous reports have shown that isolates with these 

type III effector genes are associated with infections of different character and 

severity (El-Solh, et al. 2012; Finck-Barbançon, et al. 1997; Hauser, et al. 2002; 

Hauser, et al. 1998; Pena, et al. 2015; Schulert, et al. 2003; Shaver and Hauser 

2004). The strong association of these genes with separate phylogenetic groups 

combined with our findings that very few other accessory genes are similarly 

group-exclusive raises suspicion that these genes may play an important role in 

niche adaptation and/or establishing a genetic barrier between the groups. 

The genetic mechanisms that account for the separation of the exoS and 

exoU genes into Groups A and B are unknown. The exoU gene is thought to 

have been acquired by horizontal gene transfer into Group B isolates, as it is 

located within a highly variable genomic island inserted into a chromosomal 

tRNALys gene (Kulasekara, et al. 2006). The provenance of exoS is less clear.  

This gene may have been present in an early ancestor of all P. aeruginosa 

strains and subsequently lost from Group B isolates, or Group A isolates may 

have acquired exoS by horizontal gene transfer early in this group's divergence 

from Group B. Some evidence supports the former hypothesis. The nucleotide 

sequence of exoS is 80.2% identical to the effector gene exoT, which is present 

in all Group A and Group B isolates, suggesting that exoS and exoT arose very 

early from a duplication event (Yahr, et al. 1996). The spcS chaperone gene, 

which is immediately adjacent to exoS in Group A isolates, is found in both 

Group A and Group B isolates, again consistent with deletion of exoS in Group B 

isolates.  Likewise, sequencing studies suggested that exoS has been deleted 
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from Group C2 PA7-like strains (Huber, et al. 2016), so there is a precedent for 

loss of exoS from a group of isolates.  Deletion of exoS is postulated to have 

occurred through a recombination event involving inverted repeats bordering the 

gene and that this targeted deletion was caused by an exoU-linked gene at the 

time of exoU acquisition (Kulasekara, et al. 2006).  

In addition to exoS and exoU, several other genes were highly associated 

with Group A or Group B and are candidates for niche-adaptive genes.  One 

prominent example is the genomic island RGP32 in Group B strains. The stress 

response genes in this island, including a flavodoxin gene with a demonstrated 

immunoprotective function (Moyano, et al. 2014), may contribute to survival of 

these strains in eukaryotic hosts.  Other accessory genes that were highly 

associated with one group or the other tended to encode for hypothetical proteins 

or had undefined functions. Hence, it is not clear how they might contribute to 

niche adaptation. The prominence of fixed dimorphic variants within core genes 

with purported signal transduction mechanisms suggests they may play 

important roles in specialization to particular environments. Relative and absolute 

preponderances of certain O-antigen biosynthesis loci among isolates of one or 

the other groups suggest that these loci became fixed after differentiation and/or 

that the O-antigen biosynthesis locus may contribute to niche specialization. An 

important consequence of these findings is that phenotypic differences between 

isolates in Groups A and B that were previously attributed to a single gene (e.g. 

virulence caused by exoS or exoU) may have in fact been due to the cumulative 

effects of multiple group-discriminatory genes and core genome alleles (Pena, et 
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al. 2015; Schulert, et al. 2003).  Additional studies may uncover interesting roles 

in pathogenesis for these group-discriminatory genes and alleles.    

 The observation that P. aeruginosa has a population structure consisting 

of distinct groups led us to ask whether these groups had diverged to the extent 

that they may represent distinct species.  Although criteria for species 

designation are controversial, a number of groups have suggested that ANI is 

useful in this regard.  Consistent with previous analyses of intraspecies sequence 

diversity in P. aeruginosa (Hilker, et al. 2015), we found that Group A, B, and C1 

P. aeruginosa isolates had intergroup ANI values of >98%, which supports 

inclusion within a single species.  The fact that these three lineages appear to be 

evolutionarily independent with low intergroup recombination suggests that 

current species definitions based on ANI may indeed be broader than those 

based on evolutionary species concepts (Wiley 1978). In contrast, Group C2 

isolates had intergroup ANI values <94%, which falls outside the traditional 

species threshold by ANI.  Whereas most Group A and Group C1 isolates 

contain exoS and most Group B isolates contain exoU, the Group C2 isolates, 

such as PA7, have neither gene. Furthermore, they lack the genes encoding the 

type III secretion apparatus (Roy, et al. 2010) and instead have acquired a type-

V-secreted toxin, exolysin (Elsen, et al. 2014). Together, these results suggest 

that if the cause of genetic isolation in P. aeruginosa is ecological, isolate groups 

could potentially inhabit distinct ecological niches.  Based on these findings, 

further studies should be considered to characterize the taxonomic classification 

PA7-like Group C2 bacteria. 
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 Our findings suggest that Group A and Group B isolates may be 

associated with distinct ecological niches, so we sought to determine what these 

niches might be.  We found that isolates in each major clade were distributed 

globally across both the Eastern and Western hemispheres as well as among 

continents, so geographic separation did not account for segregation into these 

groups. As was also noted by Wiehlmann and colleagues (Wiehlmann, et al. 

2015), we found that major groups of P. aeruginosa were cultured from both 

environmental and clinical sources.  However, relatively fewer Group B isolates 

were from the natural environment, suggesting that these isolates may be more 

adapted to healthcare settings, human hosts, or non-natural settings. This was 

particularly apparent in isolates from eyes, ears, and noses of patients and 

agrees with prior reports of exoU+ isolates being common in infections of these 

sites (Lomholt, et al. 2001; Rutherford, et al. 2018; Stewart, et al. 2011). Isolates 

from individuals with CF were an exception and were rarely members of Group 

B. The previously reported predominance of exoS+ isolates among P. 

aeruginosa-infected CF patients is consistent with this finding (Feltman, et al. 

2001), although it is unlikely that the CF lung environment itself is driving 

adaptation of Group A isolates.  With the exception of specific epidemic strains 

(e.g. LES), it is currently believed that most CF isolates are not transmitted back 

to the environment or to another individual with CF (Parkins, et al. 2018). One 

explanation for these findings is that P. aeruginosa inhabits geographically 

overlapping but distinct micro-environments, and that patients with different types 

of infections acquire their P. aeruginosa isolates from different environmental 

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/advance-article-abstract/doi/10.1093/gbe/evz119/5512492 by U

niversity of W
arw

ick user on 18 June 2019



 39 

reservoirs.  In one scenario, the group discriminatory genes could provide 

defense against different predators found in the distinct environmental niches.  

Indeed, the exoS and exoU genes allow P. aeruginosa to kill amoebae (Abd, et 

al. 2008; Matz, et al. 2008).  Likewise, in other bacterial species, amoebae 

recognize O-antigen types with differing efficiencies, which may drive selection of 

different O-antigen types in specific environments (Atzinger, et al. 2016; 

Wildschutte, et al. 2004). Thus, the exoS/exoU genotypes and O-antigen 

serotypes of Group A and B isolates may vary because these isolates inhabit 

different ecological niches, each with its own distinct set of amoebae or other 

predators.  Another possibility is that most patients are exposed to both Group A 

and Group B P. aeruginosa isolates but that the genes specific to each group 

favor the establishments of different types of infections. These hypotheses need 

to be further explored with a larger number of isolates from diverse sources. 

 Our study has some important limitations. First, this study cannot 

definitively determine whether the genetic isolation between Group A and Group 

B resulted from ecological or biological factors. Further studies, perhaps with 

more detailed geographic and environmental metadata for isolates, will be 

required to address this question. Second, the P. aeruginosa genomes in NCBI 

are not a random collection, and some sets of isolates are over-represented as 

the result of sequencing of multiple very similar isolates, while isolates from other 

sources are underrepresented or absent. For example, relatively few isolates 

from non-clinical sources were available in the NCBI database when this study 

began. We were able to supplement these numbers somewhat by sequencing 
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nine more environmental isolates, but substantially more environmental isolates 

should be included in future studies. Another potential limitation is that the 

genomes in the database were provided by multiple contributors to a public 

database and varied in quality of both sequencing and assembly. Hence some 

genes and/or genomic regions may have been omitted from lower quality 

assemblies. Nevertheless, in only 11 of the 739 genome sequences (1.5%) could 

neither the exoU nor the exoS gene be identified, which is consistent with the 

prevalence of exoS- / exoU- isolates in other reports (Berthelot, et al. 2003; 

Pirnay, et al. 2009). Finally, we found few Group C1 and C2 isolates, which 

precluded a more thorough analysis of these groups. It is unclear whether 

isolates in these groups are truly rare relative to Group A and Group B isolates, 

or whether they were underrepresented due to sampling bias. As the number of 

P. aeruginosa isolates sequenced and deposited in public databases continues 

to grow, future studies may more fully define characteristics of isolates within 

these groups, their relationships to the species population structure, and the 

drivers of genetic isolation in P. aeruginosa.  

 

Conclusions 

We used a large collection of P. aeruginosa whole-genome sequences to confirm 

that the majority of isolates segregated into two distinct groups. In addition to the 

phylogenetic distance between the groups, infrequent intergroup recombination 

relative to intragroup recombination and greater intragroup accessory genome 

similarity suggests that they are genetically isolated. A small set of core genome 
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alleles and accessory genes discriminated between these two groups.  This set 

included exoS and exoU (type III secretion effector genes) and RGP32, which 

encodes a flavodoxin gene implicated in virulence, among others.  These genes 

and alleles are candidates for niche-adaptive factors. Although genetic 

differences between Groups A, B, and C1 did not meet standard ANI criteria for 

categorization as separate species, Group C2 isolates warrant further 

consideration for reclassification.  Further studies are necessary to determine 

whether ecological and biological barriers separate these three groups, the 

specific ecological niches occupied by different P. aeruginosa groups, and how 

genetic differences contribute to the adaptation of each group.    
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Figure Legends: 

Figure 1. Population structure of P. aeruginosa isolates. The upper panel shows 

a maximum likelihood phylogenetic tree generated from core genome SNP loci in 

739 P. aeruginosa isolates.  The lower panel shows an expanded version of the 

same phylogenetic tree with a truncated outlier branch. Major branches are 

indicated by labels and highlighting: Group A (red), Group B (blue), and Group C 

(purple). Group C isolates are further subdivided into Group C1 (light purple) and 

Group C2 (dark purple).  Several isolates mentioned in the text are indicated.  

The scale bars represent genetic distances. 

 

Figure 2. Core genome recombination between the major groups of P. 

aeruginosa. The inferred sources of recombinant regions identified within isolates 

in Group A (panel A) and Group B (panel B) are shown. The vectors indicate the 

direction of recombinant region flow. “Internal (ambiguous)” represents a source 

of recombinant sequence within Groups A, B, C1 or C2 but for which the source 

could not be attributed to any one of the groups. “External” represents a source 

of recombination from outside of Groups A, B, C1 or C2. Vectors are labeled with 

the number of recombination events originating from each source, and the 

numbers in parentheses are the percentages of the total recombination events in 

the destination group represented by each vector.   

 

Figure 3. Dimorphic SNV loci in P. aeruginosa.  Dimorphic SNV loci are defined 

as core genome positions with one variant in at least 98% of the Group A isolates 
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and a different variant present in at least 98% of the Group B isolates. Each bar 

represents the total number of dimorphic SNV loci within a 100 kb window 

relative to the PA14 genome. Numbers of SNVs within coding regions predicted 

to encode a different amino acid (non-synonymous mutations) are shown in red, 

whereas those SNVs not predicted to result in an amino acid change 

(synonymous mutations) are shown in blue. Numbers of SNVs found within 

intergenic regions are shown in green.  

 

Figure 4. Accessory genome content of Group A and Group B isolates. (A) 

Multiple correspondence analysis of AGEs at least 100 bp in length. Orange = 

Group A, blue = Group B, pink = Group C1, purple = Group C2. (B) A neighbor-

joining tree was generated from the Bray-Curtis distances calculated from AGEs 

at least 100 bp in length and midpoint rooted. The major group memberships of 

isolates are indicated in the columns along the left and upper axes of the 

heatmap (red = Group A, blue = Group B, purple = Group C). The heatmap 

shows pairwise accessory genome content similarities based on inverse Bray-

Curtis distances (1 – d) according to the scale bar. 

 

Figure 5. Isolate demographic and accessory genome characteristics. Each 

panel shows 95% core genome maximum likelihood trees with isolate information 

highlighted. Trees are displayed as phylograms with branch lengths that do not 

correspond to genetic distances. Major clonal groups are highlighted in red 

(Group A), blue (Group B), and purple (Group C). (A) Accessory genome 
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characteristics. Inner ring: Presence of type III effector genes exoS and exoU. 

Outer ring: O-antigen biosynthesis locus type. (B) Geographic source of isolates. 

Inner ring: isolates sequenced as part of this study. Middle ring: Global 

hemisphere of isolation. Outer ring: Continent of isolation. (C) Source of 

environmental isolates. Inner ring: Environmental vs. clinical isolates. Outer ring: 

Specific sources of environmental isolates. (D) Source of clinical isolates. Inner 

ring: CF vs. non-CF clinical isolates. Outer ring: Body site of isolation for the non-

CF isolates.  
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Table 1: Recombination parameters
Group # Strains # events R/theta delta nu r/m
All 739 19965 0.2720 4209.9 0.002206 2.5261
Group A 541 17993 0.5491 3193.8 0.002103 3.6885
Group B 186 1635 0.1686 31277.3 0.001598 8.4280
Group C1 5 124 0.1349 1738.3 0.004562 1.0694
Group C2 5 185 0.6390 1480.0 0.001988 1.8800

R/theta: relative rate of recombination to mutation
delta: mean DNA import length
nu: mean divergence of imported DNA
r/m: relative contribution of recombination vs. mutation to diversity
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Table 2. Core, Accessory, and Pangenome Characteristics
Size (bp) % GC

Core Genome1 5,784,306 66.94%
Accessory Genome2 911,794 (276,874 - 2,193,688) 61.58% (59.1% - 65.48%)
Unique Accessory Genome 26,280,940                         57.19%
Pangenome 32,065,171                         58.98%

1. 95% core genome, i.e. sequence present in � 702 of 739 isolates
2. Values are medians. Values in parentheses are minimum and maximum values
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Table 3: Average nucleotide identities (ANI)
Average (standard deviation)

Group A Group B Group C1 Group C2 CF-PA39|JDVE PS75|JIEP
Group A 99.31 (0.1484)
Group B 98.76 (0.1206) 99.15 (0.2707)
Gropu C1 98.20 (0.0648) 98.03 (0.0598) 99.42 (0.2248)
Group C2 93.49 (0.1081) 93.51 (0.1009) 93.38 (0.1075) 99.03 (0.2409)
CF-PA39|JDVE 97.54 (0.0480) 97.46 (0.0510) 97.18 (0.0318) 93.40 (0.0774) NA (NA)
PS75|JIEP 99.08 (0.0485) 99.03 (0.0620) 98.14 (0.0330) 93.49 (0.0849) 97.47 (0.0063) NA (NA)
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