1,725 research outputs found

    A Characterization of Uniquely Representable Graphs

    Get PDF
    The betweenness structure of a finite metric space M=(X,d)M = (X, d) is a pair B(M)=(X,βM)\mathcal{B}(M) = (X,\beta_M) where βM\beta_M is the so-called betweenness relation of MM that consists of point triplets (x,y,z)(x, y, z) such that d(x,z)=d(x,y)+d(y,z)d(x, z) = d(x, y) + d(y, z). The underlying graph of a betweenness structure B=(X,β)\mathcal{B} = (X,\beta) is the simple graph G(B)=(X,E)G(\mathcal{B}) = (X, E) where the edges are pairs of distinct points with no third point between them. A connected graph GG is uniquely representable if there exists a unique metric betweenness structure with underlying graph GG. It was implied by previous works that trees are uniquely representable. In this paper, we give a characterization of uniquely representable graphs by showing that they are exactly the block graphs. Further, we prove that two related classes of graphs coincide with the class of block graphs and the class of distance-hereditary graphs, respectively. We show that our results hold not only for metric but also for almost-metric betweenness structures.Comment: 16 pages (without references); 3 figures; major changes: simplified proofs, improved notations and namings, short overview of metric graph theor

    Causation, Measurement Relevance and No-conspiracy in EPR

    Get PDF
    In this paper I assess the adequacy of no-conspiracy conditions employed in the usual derivations of the Bell inequality in the context of EPR correlations. First, I look at the EPR correlations from a purely phenomenological point of view and claim that common cause explanations of these cannot be ruled out. I argue that an appropriate common cause explanation requires that no-conspiracy conditions are re-interpreted as mere common cause-measurement independence conditions. In the right circumstances then, violations of measurement independence need not entail any kind of conspiracy (nor backwards in time causation). To the contrary, if measurement operations in the EPR context are taken to be causally relevant in a specific way to the experiment outcomes, their explicit causal role provides the grounds for a common cause explanation of the corresponding correlations.Comment: 20 pages, 1 figur

    Vortex dynamics in a three-state model under cyclic dominance

    Full text link
    The evolution of domain structure is investigated in a two-dimensional voter model with three states under cyclic dominance. The study focus on the dynamics of vortices, defined by the points where three states (domains) meet. We can distinguish vortices and antivortices which walk randomly and annihilate each other. The domain wall motion can create vortex-antivortex pairs at a rate which is increased by the spiral formation due to the cyclic dominance. This mechanism is contrasted with a branching annihilating random walk (BARW) in a particle antiparticle system with density dependent pair creation rate. Numerical estimates for the critical indices of the vortex density (β=0.29(4)\beta=0.29(4)) and of its fluctuation (γ=0.34(6)\gamma=0.34(6)) improve an earlier Monte Carlo study [Tainaka and Itoh, Europhys. Lett. 15, 399 (1991)] of the three-state cyclic voter model in two dimensions.Comment: 5 pages, 6 figures, to appear in PR

    Flow properties of driven-diffusive lattice gases: theory and computer simulation

    Get PDF
    We develop n-cluster mean-field theories (0 < n < 5) for calculating the flow properties of the non-equilibrium steady-states of the Katz-Lebowitz-Spohn model of the driven diffusive lattice gas, with attractive and repulsive inter-particle interactions, in both one and two dimensions for arbitrary particle densities, temperature as well as the driving field. We compare our theoretical results with the corresponding numerical data we have obtained from the computer simulations to demonstrate the level of accuracy of our theoretical predictions. We also compare our results with those for some other prototype models, notably particle-hopping models of vehicular traffic, to demonstrate the novel qualitative features we have observed in the Katz-Lebowitz-Spohn model, emphasizing, in particular, the consequences of repulsive inter-particle interactions.Comment: 12 RevTex page

    Period and light curve fluctuations of the Kepler Cepheid V1154 Cyg

    Get PDF
    We present a detailed period analysis of the bright Cepheid-type variable star V1154 Cygni (V =9.1 mag, P~4.9 d) based on almost 600 days of continuous observations by the Kepler space telescope. The data reveal significant cycle-to-cycle fluctuations in the pulsation period, indicating that classical Cepheids may not be as accurate astrophysical clocks as commonly believed: regardless of the specific points used to determine the O-C values, the cycle lengths show a scatter of 0.015-0.02 days over the 120 cycles covered by the observations. A very slight correlation between the individual Fourier parameters and the O-C values was found, suggesting that the O - C variations might be due to the instability of the light curve shape. Random fluctuation tests revealed a linear trend up to a cycle difference 15, but for long term, the period remains around the mean value. We compare the measurements with simulated light curves that were constructed to mimic V1154 Cyg as a perfect pulsator modulated only by the light travel time effect caused by low-mass companions. We show that the observed period jitter in V1154 Cyg represents a serious limitation in the search for binary companions. While the Kepler data are accurate enough to allow the detection of planetary bodies in close orbits around a Cepheid, the astrophysical noise can easily hide the signal of the light-time effect.Comment: published in MNRAS: 8 pages, 7 figure
    corecore