119 research outputs found

    Far-infrared vibrational properties of tetragonal C60 polymer

    Get PDF
    We report high-resolution far-infrared transmittance measurements and quantum-molecular-dynamics calculations of the two-dimensional tetragonal (7) high-temperature/high-pressure C-60 polymer, as a complement to our previous work on the C-60 dimer, and the one-dimensional orthorhombic (O) and two-dimensional rhombohedral (R) C-60 Polymers [V. C. Long et at., Phys. Rev. B 61, 13 191 (2000)]. The spectral features are assigned as intramolecular modes according to our quantum-molecular-dynamics calculations. In addition, we determine the I-h C-60 parent symmetry of each polymer vibrational mode by expanding the calculated polymer eigenvectors in terms of our calculated eigenvectors for I-h C-60. We find that many of the T-polymer vibrational modes are derived from more than one I-h C-60 parent symmetry, confirming that a weak perturbation model is inadequate for these covalently bonded C-60 balls. In particular, strongly infrared-active T-polymer modes with frequencies of 606 and 610 cm(-1) are found to be derived from a linear combination of three or more I-h C-60 parent modes. As in the O and R polymers, modes of the T polymer with substantial T-1u(2) character, which are polarized in the stretched directions, are found to have large downshifts. Finally, in our comparison of theory with experiment, we find indications that the in-plane lattice of the T polymer may not actually be square

    Pinned Low Energy Electronic Excitation in Metal Exchanged Vanadium Oxide Nanoscrolls

    Full text link
    We measured the optical properties of mixed valent vanadium oxide nanoscrolls and their metal exchanged derivatives in order to investigate the charge dynamics in these compounds. In contrast to the prediction of a metallic state for the metal exchanged derivatives within a rigid band model, we find that the injected charges in Mn2+^{2+} exchanged vanadium oxide nanoscrolls are pinned. A low-energy electronic excitation associated with the pinned carriers appears in the far infrared and persists at low temperature, suggesting that the nanoscrolls are weak metals in their bulk form, dominated by inhomogeneous charge disproportionation and Madelung energy effects.Comment: 4 figure

    Dynamics of Bulk vs. Nanoscale WS_2: Local Strain and Charging Effects

    Full text link
    We measured the infrared vibrational properties of bulk and nanoparticle WS2_2 in order to investigate the structure-property relations in these novel materials. In addition to the symmetry-breaking effects of local strain, nanoparticle curvature modifies the local charging environment of the bulk material. Performing a charge analysis on the \emph{xy}-polarized E1u_{1u} vibrational mode, we find an approximate 1.5:1 intralayer charge difference between the layered 2H material and inorganic fullerene-like (IF) nanoparticles. This effective charge difference may impact the solid-state lubrication properties of nanoscale metal dichalcogenides.Comment: 6 pages, 5 figure

    Evaluation of Born and local effective charges in unoriented materials from vibrational spectra

    Full text link
    We present an application of the Lorentz model in which fits to vibrational spectra or a Kramers Kronig analysis are employed along with several useful formalisms to quantify microscopic charge in unoriented (powdered) materials. The conditions under which these techniques can be employed are discussed, and we analyze the vibrational response of a layered transition metal dichalcogenide and its nanoscale analog to illustrate the utility of this approach.Comment: 9 pages, 1 figur

    High Pressure Vibrational Properties of WS2 Nanotubes

    Get PDF
    We bring together synchrotron-based infrared and Raman spectroscopies, diamond anvil cell techniques, and an analysis of frequency shifts and lattice dynamics to unveil the vibrational properties of multiwall WS2 nanotubes under compression. While most of the vibrational modes display similar hardening trends, the Raman-active A1g breathing mode is almost twice as responsive, suggesting that the nanotube breakdown pathway under strain proceeds through this displacement. At the same time, the previously unexplored high pressure infrared response provides unexpected insight into the electronic properties of the multiwall WS2 tubes. The development of the localized absorption is fit to a percolation model, indicating that the nanotubes display a modest macroscopic conductivity due to hopping from tube to tube

    Magneto-optical investigation of the field-induced spin-glass insulator to ferromagnetic metallic transition of the bilayer manganite (La0.4_{0.4}Pr0.6_{0.6})1.2_{1.2}Sr1.8_{1.8}Mn2_2O7_7

    Full text link
    We measured the magneto-optical response of (La0.4_{0.4}Pr0.6_{0.6})1.2_{1.2}Sr1.8_{1.8}Mn2_2O7_7 in order to investigate the microscopic aspects of the magnetic field driven spin-glass insulator to ferromagnetic metal transition. Application of a magnetic field recovers the ferromagnetic state with an overall redshift of the electronic structure, growth of the bound carrier localization associated with ferromagnetic domains, development of a pseudogap, and softening of the Mn-O stretching and bending modes that indicate a structural change. We discuss field- and temperature-induced trends within the framework of the Tomioka-Tokura global electronic phase diagram picture and suggest that controlled disorder near a phase boundary can be used to tune the magnetodielectric response. Remnants of the spin-glass insulator to ferromagnetic metallic transition can also drive 300 K color changes in (La0.4_{0.4}Pr0.6_{0.6})1.2_{1.2}Sr1.8_{1.8}Mn2_2O7_7.Comment: 9 pages, 8 figure

    Charge order, dynamics, and magneto-structural transition in multiferroic LuFe2_2O4_4

    Get PDF
    We investigated the series of temperature and field-driven transitions in LuFe2_2O4_4 by optical and M\"{o}ssbauer spectroscopies, magnetization, and x-ray scattering in order to understand the interplay between charge, structure, and magnetism in this multiferroic material. We demonstrate that charge fluctuation has an onset well below the charge ordering transition, supporting the "order by fluctuation" mechanism for the development of charge order superstructure. Bragg splitting and large magneto optical contrast suggest a low temperature monoclinic distortion that can be driven by both temperature and magnetic field.Comment: 4 pages, 3 figures, PRL in prin

    Magneto-Dielectric Effect in the S = 1/2 Quasi-Two Dimensional Antiferromagnet K2V3O8

    Full text link
    We report the optical and magneto-optical properties of K2V3O8, an S=1/2 quasi-two-dimensional Heisenberg antiferromagnet. Local spin density approximation electronic structure calculations are used to assign the observed excitations and analyze the field dependent features. Two large magneto-optical effects, centered at ~1.19 and 2.5 eV, are attributed to field-induced changes in the V 4+ d to d on-site excitations due to modification of the local crystal field environment of the VO5 square pyramids with applied magnetic field. Taken together, the evidence for a soft lattice, the presence of vibrational fine structure on the sharp 1.19 eV magneto-optical feature,and the fact that these optical excitations are due to transitions from a nearly pure spin polarized V d state to hybridized states involving both V and O, suggest that the magneto-dielectric effect in K2V3O8 is driven by strong lattice coupling.Comment: Zipped file containing 8 pages, 12 figures, in press PR
    corecore