21 research outputs found

    Changes in the mesoscale variability and in extreme sea levels over two decades as observed by satellite altimetry

    Get PDF
    A data set of precise radar altimeter sea surface heights obtained from the same 10-day repeat ground track has been analysed to determine the magnitude of change in the ocean ‘mesoscale’ variability over two decades. Trends in the standard deviation of sea surface height variability each year are found to be small (typically ~0.5 percent/yr) throughout the global ocean. Trends in positive and negative extreme sea level in each region are in general found to be similar to those of mean sea level, with some small regional exceptions. Generalised Extreme Value Distribution (GEVD) analysis also demonstrates that spatial variations in the statistics of extreme positive sea levels are determined largely by the corresponding spatial variations in mean sea level changes, and are related to regional modes of the climate system such as the El Niño – Southern Oscillation. Trends in the standard deviation of along-track sea level gradient variability are found to be close to zero on a global basis, with regional exceptions. Altogether our findings suggest an ocean mesoscale variability that displays little change when considered over an extended period of two decades, but that is superimposed on a spatially and temporally varying signal of mean sea level change. This article is protected by copyright. All rights reserved

    On the assessment of the wave modeling uncertainty in wave climate projections

    Get PDF
    This study investigates the epistemic uncertainty associated with the wave propagation modeling in wave climate projections. A single-forcing, single-scenario, seven-member global wave climate projection ensemble is used, developed using three wave models with a consistent numerical domain. The uncertainty is assessed through projected changes in wave height, wave period, and wave direction. The relative importance of the wave model used and its internal parameterization are examined. The former is the dominant source of uncertainty in approximately two-thirds of the global ocean. The study reveals divergences in projected changes from runs of different models and runs of the same model with different parameterizations over 75% of the ensemble mean change in several ocean regions. Projected changes in the wave period shows the most significant uncertainties, particularly in the Pacific Ocean basin, while the wave height shows the least. Over 30% of global coastlines exhibit significant uncertainties in at least two out of the three wave climate variables analyzed. The coasts of western North America, the Maritime Continent and the Arabian Sea show the most significant wave modeling uncertainties

    Atmosphere-ocean linkages in the eastern equatorial Pacific over the early Pleistocene

    Get PDF
    Here we present a new set of high-resolution early Pleistocene records from the eastern equatorial Pacific (EEP). Sediment composition from Ocean Drilling Program Sites 1240 and 1238 is used to reconstruct past changes in the atmosphere-ocean system. Particularly remarkable is the presence of laminated diatom oozes (LDOs) during glacial periods between 1.85 and 2.25Ma coinciding with high fluxes of opal and total organic carbon. Relatively low lithic particles (coarse and poorly sorted) and iron fluxes during these glacial periods indicate that the increased diatom productivity did not result from dust-stimulated fertilization events. We argue that glacial fertilization occurred through the advection of nutrient-rich waters from the Southern Ocean. In contrast, glacial periods after 1.85Ma are characterized by enhanced dust transport of finer lithic particles acting as a new source of nutrients in the EEP. The benthic ecosystem shows dissimilar responses to the high productivity recorded during glacial periods before and after 1.85Ma, which suggests that the transport processes delivering organic matter to the deep sea also changed. Different depositional processes are interpreted to be the result of two distinct glacial positions of the Intertropical Convergence Zone (ITCZ). Before 1.85Ma, the ITCZ was above the equator, with weak local winds and enhanced wet deposition of dust. After 1.85Ma, the glacial ITCZ was displaced northward, thus bringing stronger winds and stimulating upwelling in the EEP. The glacial period at 1.65Ma with the most intense LDOs supports a rapid southward migration of the ITCZ comparable to those glacial periods before 1.85Ma

    Measuring currents, ice drift, and waves from space: the Sea Surface KInematics Multiscale monitoring (SKIM) concept

    Get PDF
    We propose a new satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40?km and more, with snapshots at least every day for latitudes 75 to 82, and every few days otherwise. The use of incidence angles at 6 and 12 degrees allows a measurement of the directional wave spectrum which yields accurate corrections of the wave-induced bias in the current measurements. The instrument principle, algorithm for current velocity and mission performance are presented here. The proposed instrument can reveal features on tropical ocean and marginal ice zone dynamics that are inaccessible to other measurement systems, as well as a global monitoring of the ocean mesoscale that surpasses the capability of today?s nadir altimeters. Measuring ocean wave properties facilitates many applications, from wave-current interactions and air-sea fluxes to the transport and convergence of marine plastic debris and assessment of marine and coastal hazards

    Wind speed variability over the Canary Islands, 1948-2014: focusing on trend differences at the land-ocean interface and below-above the trade-wind inversion layer

    Get PDF
    This study simultaneously examines wind speed trends at the land?ocean interface, and below?above the trade-wind inversion layer in the Canary Islands and the surrounding Eastern North Atlantic Ocean: a key region for quantifying the variability of trade-winds and its response to large-scale atmospheric circulation changes. Two homogenized data sources are used: (1) observed wind speed from nine land-based stations (1981?2014), including one mountain weather station (Izaña) located above the trade-wind inversion layer; and (2) simulated wind speed from two atmospheric hindcasts over ocean (i.e., SeaWind I at 30 km for 1948?2014; and SeaWind II at 15 km for 1989?2014). The results revealed a widespread significant negative trend of trade-winds over ocean for 1948?2014, whereas no significant trends were detected for 1989?2014. For this recent period wind speed over land and ocean displayed the same multi-decadal variability and a distinct seasonal trend pattern with a strengthening (late spring and summer; significant in May and August) and weakening (winter?spring?autumn; significant in April and September) of trade-winds. Above the inversion layer at Izaña, we found a predominance of significant positive trends, indicating a decoupled variability and opposite wind speed trends when compared to those reported in boundary layer. The analysis of the Trade Wind Index (TWI), the North Atlantic Oscillation Index (NAOI) and the Eastern Atlantic Index (EAI) demonstrated significant correlations with the wind speed variability, revealing that the correlation patterns of the three indices showed a spatio-temporal complementarity in shaping wind speed trends across the Eastern North Atlantic.C. A. -M. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement No. 703733 (STILLING project). This research was also supported by the Research Projects: Swedish BECC, MERGE, VR (2014–5320), PCIN-2015-220, CGL2014-52135-C03-01 and Red de variabilidad y cambio climĂĄtico RECLIM (CGL2014-517221-REDT). M.M is indebted to the Spanish Government for funding through the “RamĂłn y Cajal” program and supported by Grant PORTIO (BIA2015-70644-R

    Assessment of surf zone environmental variables in a southwestern Atlantic sandy beach (Monte Hermoso, Argentina)

    No full text
    The aim of this study was to investigate the temporal dynamics (monthly/tidal) of water temperature, salinity, chlorophyll-a (chlo-a), suspended particulate matter (SPM), particulate organic carbon (POC), and dissolved nutrients in the surf zone of Monte Hermoso sandy beach, Argentina. We also aimed to understand the underlying mechanisms responsible for the observed variability. Sampling was carried out approximately monthly (September 2009–November 2010), and all samples were collected in a fixed station during high and low tide. Water temperature showed a clear seasonal variability (July: 9 °C–December: 26.5 °C) and a thermal amplitude of 17.5 °C. Salinity ranged from 33 to 37, without a pronounced seasonality. SPM (10–223 mg L−1) and POC concentrations (399–6445 mg C m−3) were high in surf zone waters. Chlo-a (0.05–9.16 ÎŒg L−1) was low and did not evidence the occurrence of surf diatom accumulations. Dissolved nutrient concentration was quite fluctuating. None of the variables seemed to be affected by tidal stage. The results showed how fluctuating the physico-chemical and biological variables can be in this particular system. The observed variability can be related with local beach conditions but also with regional processes. The study area is highly influenced by a neighbor estuary and as a consequence, could be vulnerable to their seasonal and inter-annual dynamics. All of these characteristics must be considered for further studies and planning of the uses of natural resources and should be taken into account in any environmental monitoring program conducted in a similar beach system.Fil: Menendez, Maria Clara. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Fernandez Severini, Melisa Daiana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Buzzi, Natalia Sol. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Piccolo, Maria Cintia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; Argentina. Universidad Nacional del Sur; ArgentinaFil: Perillo, Gerardo Miguel E.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; Argentina. Universidad Nacional del Sur; Argentin

    Heavy Metal Concentrations Found in Seston and Microplankton from an Impacted Temperate Shallow Estuary along the Southwestern Atlantic Ocean

    No full text
    Heavy metal concentrations (Cd, Cu, Cr, Fe, Mn, Ni, Pb, and Zn) were studied in the BahĂ­a Blanca Estuary (BBE), one of the most anthropogenically disturbed estuaries in the SW Atlantic Ocean. This study evaluated metal concentrations in the microplankton and seston for the first time, as well as their role in the transport of contaminants in a disturbed coastal environment of the SW Atlantic. Spatial patterns of metals in suspended particulate matter (SPM; seston > 0.45 ÎŒm) and microplankton (20?200 ÎŒm) were analyzed at sampling sites located at sewage or industrial discharges and, also far from this area, during warm months in 2012 and 2013. Dissolved inorganic nutrients, particulate organic matter (POM), and chlorophyll a (Chl-a) were also analyzed. The POM and Chl-a concentrations were higher near to the sewage discharges; however, metals showed different concentrations between sampling site stations. Those located far from human disturbances showed similar levels to the sites at the sewage or industrial discharges in some cases. In general, the SPM had higher concentrations of metals than the microplankton. In particular, Cr presented important levels in this fraction, which was potentially associated with industrial discharges. On the other hand, a contrasting partition was found for Pb, Zn, and Cu that exhibited higher levels in the microplankton-net material. The high levels of Pb in the microplankton of the BBE may indicate a high availability of this metal in the environment and high uptake rates, with potential health risks to humans and marine life attributable to its toxic effects.Fil: Fernandez Severini, Melisa Daiana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Villagran, Diana Mariel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Biancalana, Florencia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Berasategui, Anabela Anhi. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Spetter, Carla Vanesa. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; Argentina. Universidad Nacional del Sur. Departamento de QuĂ­mica; ArgentinaFil: Tartara, MatĂ­as NicolĂĄs. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Menendez, Maria Clara. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Guinder, Valeria Ana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Marcovecchio, Jorge Eduardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; Argentina. Universidad Tecnologica Nacional; Argentin

    Reproductive trade-off of the copepod Acartia tonsa in a hypersaline estuary of the Southwestern Atlantic. Temporal variations in the morphology of eggs

    No full text
    The purpose of the present work was to study the seasonal variations in egg production, morphology and hatching success in the cryptic species Acartia tonsa, taking into account variations in female size, population abundance and environmental factors in a turbid and hypersaline estuary. Sampling was performed during the austral warm (18–23°C and 32–36 salinity) and cold seasons (5–7°C; 32–38) in BahĂ­a Blanca Estuary (BBE), Argentina, during 2007 and 2009. Field-collected females were incubated in the laboratory simulating in situ environmental conditions, and specimens from fixed samples were measured using optical and scanning electronic microscopy. Acartia tonsa’s marked seasonality in its reproductive traits was found to ensure its permanence in the water column all over the year. During the warm season, small-sized females were observed to invest their energy in the production of subitaneous eggs with high hatching success and smooth appearance (12.95 ± 2.38 eggs f−1 day−1 and specific egg production rate (SEP) of 16.57%C f−1 day−1). During the cold season, females invested C in body mass as well as in the production of resting eggs of three different morphotypes (6.56 ± 3.2 eggs f−1 day−1 and SEP of 7.37%C f−1 day−1). Although these morphotypes were found to show differences in surface ornamentation, they exhibited the same delayed hatching behaviour. The eggs with shorter spines were found to integrate the resting egg bank in BBE. Our findings confirming a delayed egg hatching behaviour and a great tolerance to low temperatures and high salinities in the A. tonsa population in BBE suggest that this possible strain is a valuable phenotype for aquaculture.Fil: Berasategui, Anabela Anhi. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Fernandez Severini, Melisa Daiana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Menendez, Maria Clara. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Biancalana, Florencia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Dutto, MarĂ­a SofĂ­a. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Guinder, Valeria Ana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: LĂłpez Abbate, MarĂ­a Celeste. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Chazarreta, Carlo Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Hoffmeyer, Monica Susana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; Argentin

    Robustness and uncertainties in global multivariate wind wave climate projections

    No full text
    Understanding climate-driven impacts on the multivariate global wind-wave climate is paramount to effective offshore/coastal climate adaptation planning. However, the use of single-method ensembles and variations arising from different methodologies has resulted in unquantified uncertainty amongst existing global wave climate projections. Here, assessing the first coherent, community-driven, multi-method ensemble of global wave climate projections, we demonstrate widespread ocean regions with robust changes in annual mean significant wave height and mean wave period of 5–15% and shifts in mean wave direction of 5–15°, under a high-emission scenario. Approximately 50% of the world’s coastline is at risk from wave climate change, with ~40% revealing robust changes in at least two variables. Furthermore, we find that uncertainty in current projections is dominated by climate model-driven uncertainty, and that single-method modelling studies are unable to capture up to ~50% of the total associated uncertainty.JRC.E.1-Disaster Risk Managemen
    corecore