20 research outputs found

    Accurate Atmospheric Parameters at Moderate Resolution Using Spectral Indices: Preliminary Application to the MARVELS Survey

    Full text link
    Studies of Galactic chemical and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (Teff, [Fe/H] and log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. While most surveys use spectral synthesis, in this work we employ an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R~12,000). We have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices and, through the comparison of those with values calculated with pre-determined calibrations, derive the atmospheric parameters of the stars. The calibrations were built using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters from high-resolution spectroscopic analysis. Our approach was able to recover the parameters within 80 K for Teff, 0.05 dex for [Fe/H] and 0.15 dex for log g, values that are lower or equal to the typical external uncertainties found between different high-resolution analyzes. An additional test was performed with a subsample of 138 stars from the ELODIE stellar library and the literature atmospheric parameters were recovered within 125 K for Teff, 0.10 dex for [Fe/H] and 0.29 dex for log g. These results show that the spectral indices are a competitive tool to characterize stars with the intermediate resolution spectra.Comment: Accepted for publication in AJ. Abstract edited to comply with arXiv standards regarding the number of character

    Exploring the brown dwarf desert : new substellar companions from the SDSS-III MARVELS survey

    Get PDF
    Planet searches using the radial velocity technique show a paucity of companions to solar-type stars within ∼5 au in the mass range of ∼10–80 MJup. This deficit, known as the brown dwarf desert, currently has no conclusive explanation. New substellar companions in this region help assess the reality of the desert and provide insight to the formation and evolution of these objects. Here, we present 10 new brown dwarf and 2 low-mass stellar companion candidates around solar-type stars from the Multi-object APO Radial Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III. These companions were selected from processed MARVELS data using the latest University of Florida Two Dimensional pipeline, which shows significant improvement and reduction of systematic errors over previous pipelines. The 10 brown dwarf companions range in mass from ∼13 to 76 MJup and have orbital radii of less than 1 au. The two stellar companions have minimum masses of ∼98 and 100 MJup. The host stars of the MARVELS brown dwarf sample have a mean metallicity of [Fe/H] = 0.03 ± 0.08 dex. Given our stellar sample we estimate the brown dwarf occurrence rate around solar-type stars with periods less than ∼300 d to be ∼0.56 per cent

    Multiband photometry towards the inner galactic bulge : extinction, atmospheric parameters, and metallicities

    Get PDF
    Context. We have obtained BVRI photometry for 21 stellar fields located in directions towards the central 3.5° of the Galaxy. Each field is 10 × 10 arcmin in size, and a total of ∼2 × 105 stars were measured. Aims. Previous analyses based on 2 Micron All Sky Survey (2MASS) data have shown that these directions have a relatively low extinction (AK - ~ 0.25−0.30). The combined optical-infrared sample contains about 3.5 × 104 stars. This large dataset provides a more detailed extinction map within these surveyed areas than previously derived. The large number of colour indexes available also yielded estimates of effective temperatures and metallicities for the inner bulge stars. Methods. Extinction and effective temperature were estimated for each star based on comparing the observed colours to model predictions. The extinction-corrected colour magnitude diagrams indicate the presence of a broad red giant branch of inner bulge stars detached from the helium-burning red clump of both bulge and disc stars. The red giant stars belonging to the bulge form a wide sequence mostly due to variable metallicity. As previously done by other authors, we derived photometric metallicities by comparing the position of each bulge red giant to a set of templates based on Galactic globular clusters. Results. We confirm the existence of regions with AK < 0.30 in these fields, as attested by analysis of the stellar colours. The resulting metallicity distribution function is peaked at [Fe/H] - ~ −0.25 and extends to supersolar values up to [Fe/H] - ~ 0.3. This distribution is similar among the 4 regions, with relatively small field-to-field variations within the central 1kpc. Our results are also in good agreement with the metallicity distributions from other authors, both photometric and spectroscopic. Put together, this result strongly limits the existence of an abundance gradient in the inner bulge

    Exploring the brown dwarf desert : new substellar companions from the SDSS-III MARVELS survey

    No full text
    Planet searches using the radial velocity technique show a paucity of companions to solar-type stars within ∼5 au in the mass range of ∼10–80 MJup. This deficit, known as the brown dwarf desert, currently has no conclusive explanation. New substellar companions in this region help assess the reality of the desert and provide insight to the formation and evolution of these objects. Here, we present 10 new brown dwarf and 2 low-mass stellar companion candidates around solar-type stars from the Multi-object APO Radial Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III. These companions were selected from processed MARVELS data using the latest University of Florida Two Dimensional pipeline, which shows significant improvement and reduction of systematic errors over previous pipelines. The 10 brown dwarf companions range in mass from ∼13 to 76 MJup and have orbital radii of less than 1 au. The two stellar companions have minimum masses of ∼98 and 100 MJup. The host stars of the MARVELS brown dwarf sample have a mean metallicity of [Fe/H] = 0.03 ± 0.08 dex. Given our stellar sample we estimate the brown dwarf occurrence rate around solar-type stars with periods less than ∼300 d to be ∼0.56 per cent

    Very-low-mass stellar and substellar companion to solar-like stars from MARVELS. III. A short-period brown dwarf cadidate around an active G0IV subgiant

    Get PDF
    We present an eccentric, short-period brown dwarf candidate orbiting the active, slightly evolved subgiant star TYC 2087-00255-1, which has effective temperature Teff = 5903±42 K, surface gravity log(g) = 4.07±0.16 (cgs), and metallicity [Fe/H] = −0.23 ± 0.07. This candidate was discovered using data from the first two years of the Multi-object APO Radial Velocity Exoplanets Large-area Survey, which is part of the third phase of Sloan Digital Sky Survey. From our 38 radial velocity measurements spread over a two-year time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 3.571 ± 0.041 km s−1, period P = 9.0090 ± 0.0004 days, and eccentricity e = 0.226±0.011. Adopting a mass of 1.16±0.11M for the subgiant host star, we infer that the companion has a minimum mass of 40.0 ± 2.5MJup. Assuming an edge-on orbit, the semimajor axis is 0.090 ± 0.003 AU. The host star is photometrically variable at the ∼1% level with a period of ∼13.16±0.01 days, indicating that the host star spin and companion orbit are not synchronized. Through adaptive optics imaging we also found a point source 643 ± 10 mas away from TYC 2087-00255-1, which would have a mass of 0.13M if it is physically associated with TYC 2087-00255-1 and has the same age. Future proper motion observation should be able to resolve if this tertiary object is physically associated with TYC 2087-00255-1 and make TYC 2087-00255-1 a triple body system. Core Ca ii H and K line emission indicate that the host is chromospherically active, at a level that is consistent with the inferred spin period and measured vrot sin i, but unusual for a subgiant of this Teff . This activity could be explained by ongoing tidal spin-up of the host star by the companion

    Exploring the brown dwarf desert : new substellar companions from the SDSS-III MARVELS survey

    No full text
    Planet searches using the radial velocity technique show a paucity of companions to solar-type stars within ∼5 au in the mass range of ∼10–80 MJup. This deficit, known as the brown dwarf desert, currently has no conclusive explanation. New substellar companions in this region help assess the reality of the desert and provide insight to the formation and evolution of these objects. Here, we present 10 new brown dwarf and 2 low-mass stellar companion candidates around solar-type stars from the Multi-object APO Radial Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III. These companions were selected from processed MARVELS data using the latest University of Florida Two Dimensional pipeline, which shows significant improvement and reduction of systematic errors over previous pipelines. The 10 brown dwarf companions range in mass from ∼13 to 76 MJup and have orbital radii of less than 1 au. The two stellar companions have minimum masses of ∼98 and 100 MJup. The host stars of the MARVELS brown dwarf sample have a mean metallicity of [Fe/H] = 0.03 ± 0.08 dex. Given our stellar sample we estimate the brown dwarf occurrence rate around solar-type stars with periods less than ∼300 d to be ∼0.56 per cent

    Very low mass stellar and substellar companions to solar-like stars from MARVELS. II. A short-period companios orbiting an F star with evidence of a stellar tertiary and significant mutual inclination

    Get PDF
    We report the discovery via radial velocity (RV) measurements of a short-period (P = 2.430420±0.000006 days) companion to the F-type main-sequence star TYC 2930-00872-1. A long-term trend in the RV data also suggests the presence of a tertiary stellar companion with P > 2000 days. High-resolution spectroscopy of the host star yields Teff = 6427 ± 33 K, log g = 4.52 ± 0.14, and [Fe/H] = −0.04 ± 0.05. These parameters, combined with the broadband spectral energy distribution (SED) and a parallax, allow us to infer a mass and radius of the host star of M1 = 1.21 ± 0.08 M and R1 = 1.09+0.15 −0.13 R . The minimum mass of the inner companion is below the hydrogen-burning limit; however, the true mass is likely to be substantially higher. We are able to exclude transits of the inner companion with high confidence. Further, the host star spectrum exhibits a clear signature of Ca H and K core emission, indicating stellar activity, but a lack of photometric variability and small v sin I suggest that the primary’s spin axis is oriented in a pole-on configuration. The rotational period of the primary estimated through an activity–rotation relation matches the orbital period of the inner companion to within 1.5 σ, suggesting that the primary and inner companion are tidally locked. If the inner companion’s orbital angular momentum vector is aligned with the stellar spin axis as expected through tidal evolution, then it has a stellar mass of ∼0.3–0.4 M . Direct imaging limits the existence of stellar companions to projected separations <30 AU. No set of spectral lines and no significant flux contribution to the SED from either companion are detected, which places individual upper mass limits of M{2,3} 1.0 M , provided they are not stellar remnants. If the tertiary is not a stellar remnant, then it likely has a mass of ∼0.5–0.6M , and its orbit is likely significantly inclined from that of the secondary, suggesting that the Kozai–Lidov mechanism may have driven the dynamical evolution of this system

    Very-low-mass stellar and substellar companion to solar-like stars from MARVELS. III. A short-period brown dwarf cadidate around an active G0IV subgiant

    Get PDF
    We present an eccentric, short-period brown dwarf candidate orbiting the active, slightly evolved subgiant star TYC 2087-00255-1, which has effective temperature Teff = 5903±42 K, surface gravity log(g) = 4.07±0.16 (cgs), and metallicity [Fe/H] = −0.23 ± 0.07. This candidate was discovered using data from the first two years of the Multi-object APO Radial Velocity Exoplanets Large-area Survey, which is part of the third phase of Sloan Digital Sky Survey. From our 38 radial velocity measurements spread over a two-year time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 3.571 ± 0.041 km s−1, period P = 9.0090 ± 0.0004 days, and eccentricity e = 0.226±0.011. Adopting a mass of 1.16±0.11M for the subgiant host star, we infer that the companion has a minimum mass of 40.0 ± 2.5MJup. Assuming an edge-on orbit, the semimajor axis is 0.090 ± 0.003 AU. The host star is photometrically variable at the ∼1% level with a period of ∼13.16±0.01 days, indicating that the host star spin and companion orbit are not synchronized. Through adaptive optics imaging we also found a point source 643 ± 10 mas away from TYC 2087-00255-1, which would have a mass of 0.13M if it is physically associated with TYC 2087-00255-1 and has the same age. Future proper motion observation should be able to resolve if this tertiary object is physically associated with TYC 2087-00255-1 and make TYC 2087-00255-1 a triple body system. Core Ca ii H and K line emission indicate that the host is chromospherically active, at a level that is consistent with the inferred spin period and measured vrot sin i, but unusual for a subgiant of this Teff . This activity could be explained by ongoing tidal spin-up of the host star by the companion

    Very low mass stellar and substellar companions to solar-like stars from MARVELS. IV. A candidate bronw dwarf or low-mass stellar companion HIP 67526

    Get PDF
    We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr.OurKeplerian fit, using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695+0.0188 −0.0187 days, an eccentricity of 0.4375±0.0040, and a semi-amplitude of 2948.14+16.65 −16.55 m s−1. Using additional high-resolution spectroscopy, we find the host star has an effective temperature Teff = 6004 ± 34 K, a surface gravity log g (cgs) = 4.55 ± 0.17, and a metallicity [Fe/H] = +0.04 ± 0.06. The stellar mass and radius determined through the empirical relationship of Torres et al. yields 1.10±0.09M and 0.92±0.19R . The minimummass ofMARVELS- 5b is 65.0±2.9MJup, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101 ± 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2 M at a separation larger than 40 AU
    corecore