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VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS.
IV. A CANDIDATE BROWN DWARF OR LOW-MASS STELLAR COMPANION TO HIP 67526
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ABSTRACT

We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to
the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey
(MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr. Our Keplerian fit, using

a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695*%%!%% days,

an eccentricity of 0.4375 £ 0.0040, and a semi-amplitude of 2948. 1411166"6555 m s~!. Using additional high-resolution
spectroscopy, we find the host star has an effective temperature T.r = 6004 £ 34 K, a surface gravity log g (cgs)
= 4.55 £ 0.17, and a metallicity [Fe/H] = +0.04 £ 0.06. The stellar mass and radius determined through the
empirical relationship of Torres et al. yields 1.10 £ 0.09 Mg and 0.92 +0.19 Ry . The minimum mass of MARVELS-
Sbis 65.0 £2.9 My, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively
sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101
=+ 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images
taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than
0.2 Mg, at a separation larger than 40 AU.

Key words: binaries: spectroscopic — brown dwarfs — stars: individual (HIP 67526) — stars: low-mass — techniques:
radial velocities

Online-only material: color figures

1. INTRODUCTION are sufficiently massive to fuse deuterium (Chabrier et al. 2000;

Spiegel etal. 2011). As aresult, their luminosity and temperature

Brown dwarfs (BDs; Basri 2000) are star-like objects that drop throughout their lifetimes (e.g., Burrows et al. 1997;
are not massive enough to sustain stable hydrogen burning but Baraffe et al. 2003). To date, over 800 BDs have been directly
and indirectly discovered through a variety of methods (e.g.,

24 LAMOST Fellow. Rebolo et al. 1995; Oppenheimer et al. 1995; Ruiz et al. 1997;
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Tinney et al. 1997; Kirkpatrick et al. 1999, 2000, 2011; Marcy
& Butler 2000; Mayor & Udry 2000; Sahlmann et al. 2011).
Most of the known BDs are free-floating objects detected in
the imaging surveys. These surveys seem to imply a continuous
distribution of masses through the hydrogen burning limit, with
the abundance of BD rivaling that of stars.

The radial velocity (RV) technique has rapidly developed in
the last three decades, and has led to the first discoveries of
extrasolar planets around solar-like stars (Latham et al. 1989;
Mayor & Queloz 1995; Marcy & Butler 1996). Since the re-
flex RV semi-amplitudes induced by BD companions could
be many hundreds of meters per second, which are consider-
ably larger than the signals induced by planetary companions,
RV surveys should easily discover BD companions. However,
only 60 BD companions to solar-like stars in relatively short
(P < 10* days) orbits have been identified in all the previous
RV surveys (e.g., Marcy & Butler 2000; Mayor & Udry 2000;
Vogtetal. 2002; Sahlmann et al. 2011; Diaz et al. 2012). The dis-
tribution of masses for spectroscopic companions to solar-like
stars shows a clear deficit in the BD mass range (the “brown
dwarf desert”; Marcy & Butler 2000), quite in contrast to the
surveys of free-floating BDs. Moreover, the statistical investi-
gations of stellar companions to solar-like stars have shown a
paucity of companions with mass ratios (¢ = M./M,) < 0.2,
suggesting that the short-period BD desert extends in mass to-
ward the low-mass star regime (Pont et al. 2005; Burgasser et al.
2007; Bouchy et al. 2011; Wisniewski et al. 2012).

The Multi-object Apache Point Observatory (APO) Radial
Velocity Exoplanet Large-area Survey (MARVELS), part of the
Sloan Digital Sky Survey III (SDSS-III; Eisenstein et al. 2011)
program,” monitors several thousands of stars in the magni-
tude range V = 8-12 by visiting each star ~24 times over an
18 month interval with moderate RV precision (Ge et al. 2008;
Ge et al. 2009; Ge & Eisenstein 2009). Currently, more than 10
very low mass stellar and substellar companion candidates have
been identified. In order to confirm the discoveries and charac-
terize them further, the MARVELS survey team made extensive
follow-up observations, including high-precision RV monitor-
ing, high-resolution spectroscopy, time-series photometry, and
high-contrast imaging.

High-precision RV follow-up observations are useful to
refine orbital solutions and to detect additional lower-mass
companions in the candidate systems. We also used multi-epoch
high-resolution spectroscopy to rule out potential false alarms
due to spectral contamination at the moderate resolving power
of the MARVELS spectrograph. MARVELS-1b was announced
as the first detection of a BD candidate from MARVELS
(Lee et al. 2011). Further analysis of precise RVs made with
the Hobby—Eberly Telescope High Resolution Spectrograph
initially suggested an interior giant planet in a 3:1 period
commensurability with MARVELS-1b. However, the apparent
RV residuals to a one-companion fit were later proven to be
due to spectral contamination by a stellar companion. This was
determined by the identification of strong line bisector variations
(Wright et al. 2013). MARVELS-1 is actually a face-on double-
lined spectroscopic binary instead of a single star with a BD
companion. In another MARVELS candidate BD system (TYC
3010-1494-1), a highly eccentric, double-lined spectroscopic
binary star system masqueraded as the RV signal of a single star
orbited by a very low mass companion (Mack et al. 2013).

25 http://www.sdss3.org/surveys/marvels.php
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Excluding these two false positive detections, three out of
four published MARVELS discoveries have a possible ter-
tiary companion detected at wide separations in their systems.
MARVELS-2b is likely to be a low-mass stellar companion
with a short-period orbit around the F star TYC 2930-00872-1
and a stellar tertiary is identified by analyzing the long-term
trend in the RV curve (Fleming et al. 2012). For MARVELS-3b,
a faint candidate tertiary companion is detected in the Keck
adaptive optics (AO) image, separated by ~1” from its host
star (TYC 4110-01037-1; Wisniewski et al. 2012). Ma et al.
(2013) detected a faint point source at a separation of ~06 from
the host star of MARVELS-4b (TYC 2087-00255-1) through
high-contrast imaging. Future proper motion observations are
necessary to resolve whether the offset objects are physically
associated with the host stars. Nevertheless, these results have
encouraged the MARVELS team to keep assessing the multi-
plicity for every future discovery in the survey.

Currently, there are about 60 BD companions to solar-like
stars that have been reported in the literature. The distribution of
masses of the companions exhibits a local minimum (the most
“arid” part of the desert) in the mass range of ~30-50 My,
(Sahlmann et al. 2011; Ma & Ge 2013). The tentative bimodal
distribution of mass may indicate that there are two formation
mechanisms for BD and low-mass stellar companions: the
low-mass BDs form by core accretion in protoplanetary disks
while more massive companions form by gravitational collapse
(Grether & Lineweaver 2006; Sahlmann et al. 2011; Ma & Ge
2013). Moreover, the properties of host stars might also have an
important impact on the formation of BD companions. Bouchy
et al. (2011) reported that super-Jupiters, BDs, and low-mass M
dwarf companions (10-100 Mj,,) to G-type (Terr S 6200 K)
stars were apparently less common than similar companions
to hotter stars. Compared to the metallicity of the planet hosts
(Santos et al. 2001; Valenti & Fischer 2005; Johnson et al.
2010), in general the hosts of BD companions are not that
metal rich (Ma & Ge 2013). Apparently the statistics of physical
parameters are important for us to understand the formation and
evolution of low-mass companions. Therefore, the MARVELS
team has taken pains to conduct follow-up studies of MARVELS
candidates in order to collect a uniformly characterized sample
for a meta-analysis.

In this paper, we report a candidate BD or a low-mass stel-
lar companion (MARVELS-5b) to HIP 67526 with a period of
~90 days from MARVELS. In Section 2.1, we describe the RV
measurements and solve for the spectroscopic orbital elements
using Markov Chain Monte Carlo (MCMC) analysis. We ana-
lyze the photometric data from SuperWASP and the astrometric
data from Hipparcos in Sections 2.2 and 2.3, respectively. In
Section 3.1, we determine precise stellar parameters for the pri-
mary star. Using the stellar mass derived in Section 3.2, we
then estimate the mass of the companion in Section 3.3. The
evolutionary state of the host star is studied in Section 3.4.
The high-contrast imaging is presented in Section 3.5. Finally,
we provide a discussion and a summary in Section 4.

2. OBSERVATIONS AND RESULTS FOR
THE LOW-MASS COMPANION

2.1. Differential Radial Velocities
2.1.1. MARVELS and TNG/SARG Measurements

HIP 67526 was selected as an RV survey target according
to the MARVELS preselection criterion (Lee et al. 2011).
It has been monitored at 21 epochs using the MARVELS
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Figure 1. Periodogram for MARVELS RV measurements of HIP 67526
exhibiting two peaks at periods of ~88 days and ~46 days. The three horizontal
lines indicate the false alarm probability at different levels (50%, 1%, 0.1%).

instrument mounted on the SDSS 2.5 m Telescope at APO
(Gunn et al. 2006) during the first two-year cycle of the
SDSS-IIT MARVELS planet-search program (Ge et al. 2008).
The MARVELS instrument is a fiber-fed dispersed fixed-
delay interferometer instrument capable of observing 60 objects
simultaneously, designed for a large-scale RV survey (Ge
2002; Ge et al. 2009). The dispersed fixed-delay interferometer
instrument principle is described in several prior papers (Ge
2002; Ge et al. 2002; Erskine 2002; Erskine et al. 2003; Ge
et al. 2006; van Eyken et al. 2011; Wang et al. 2011). The
MARVELS interferometer delay calibration is described by
Wang et al. (2012a, 2012b). The interferometer produces two
fringing spectra per object, covering a wavelength range of
5000-5700 10\, with a resolving power of R ~ 12,000. Two
iodine absorption spectra of light from a tungsten lamp taken
before and after each science exposure are used to calibrate
any instrument drift. Data processing and the error estimation
algorithm have been described in detail by Lee et al. (2011) and
Fleming et al. (2010), respectively.
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HIP 67526 was identified as a star bearing an unseen
companion by performing Lomb-Scargle (L-S) periodogram
analysis (e.g., Lomb 1976; Scargle 1982; Cumming 2004;
Baluev 2008) on the 21 MARVELS RV points. There are
two significant peaks on the L-S periodogram with periods at
~88 days and ~46 days (Figure 1). The false alarm probability
(hereafter FAP) of the 88 day peak is 0.00367%, and the FAP
of the 46 day peak is 0.0201%. We fit a Keplerian orbit to the
observed RV curve, forcing the period to be close to ~88 days
and ~46 days. The preliminary fitting results are illustrated in
Figure 2. The solution at an orbital period of 90.2 days provides
a better fit to the MARVELS RV curve than the solution at
an orbital period of 45.6 days. The shorter orbital period peak
in the periodogram is probably an alias. The minimum mass
(if sini = 1) of the unseen companion from the longer period
solution is ~65 My, (see Section 3.3 for details). The estimated
minimum mass is below the hydrogen burning limit and places
MARVELS-5b within the sparsely populated region of the mass
function of companions to solar-like stars.

We collected 10 additional RV measurements with the SARG
spectrograph (Gratton et al. 2001) at the 3.58 m Telescopio
Nazionale Galileo (TNG) Telescope in late 2010 and 2011. The
spectrograph covers a wavelength range of 4620-7920 A with
R ~ 57,000. The simultaneous iodine cell technique (Butler
et al. 1996) was employed to calibrate the RV measurements.
The raw spectra were reduced by using the standard IRAF?®
Echelle reduction packages. The final extracted differential RV's
from MARVELS and TNG/SARG are presented in Table 1.
The RV curve was sampled in total at 31 epochs using these two
instruments over 2.5 yr.

2.1.2. Spectroscopic Orbital Elements

We have performed a Bayesian analysis of the observed
RVs using a model consisting of the primary star and one
low-mass companion on an eccentric Keplerian orbit based on

26 hitp://iraf.noao.edu/
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Figure 2. Keplerian fitting results for the MARVELS RV measurements of HIP 67526 forcing the period close to ~88 days (panel a) and ~46 days (panel b).
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Table 1
Differential Radial Velocity Measurements
Instrument HID?* RV Error
(ms~1) (ms™1)
MARVELS 2454901.933194 2707.27 59.93
2454902.932454 2593.08 36.46
2454905.940208 2279.35 37.21
2454906.909213 2194.67 33.47
2454907.900972 2072.03 26.32
2454926.884479 —1290.14 71.20
2454927.893461 —1360.84 58.21
2454983.735220 3481.73 29.43
2454984.726944 3387.25 33.10
2455014.633588 —864.37 33.17
2455023.635463 —61.99 30.11
2455024.635984 414.89 38.37
2455222.898646 4441.05 36.96
2455223.889306 4515.50 33.08
2455254.894387 3393.48 33.77
2455258.906053 3081.05 31.48
2455259.892963 3006.84 29.68
2455260.882778 2900.49 33.60
2455261.939502 2788.23 31.63
2455280.845833 20.73 37.47
2455289.750139 —1401.23 33.69
TNG/SARG 2455553.785137 —3334.74 8.97
2455580.668228 1340.35 8.38
2455580.692489 1359.08 10.57
2455666.497671 873.73 9.94
2455666.521154 878.94 10.24
2455698.415610 998.61 9.27
2455725.369700 —1587.03 10.94
2455760.380520 1250.09 10.09
2455791.354961 779.89 12.41
2455791.378282 760.40 13.30

Note.  Heliocentric Julian Day.

the combined differential RV observations of MARVELS and
TNG/SARG.

We calculated a posterior sample using the MCMC tech-
nique as described in Ford (2006). Each state in the
Markov Chain is described by the parameter set § =
{P,K,e,w,M, ym, yr,oj}, where P is the orbital period, K
is the velocity semi-amplitude, e is the orbital eccentricity,
is the argument of periastron, and M is the mean anomaly at
the chosen epoch (7). The parameters y,, and y; are constant
systemic velocity terms for the MARVELS and TNG/SARG
instruments, respectively, used to account for the offsets be-
tween the observed differential RV data and the zero point of
the Keplerian RV model. The “jitter” parameter, o, describes
any excess noise (Wright 2005), including both astrophysical
sources of noise (e.g., stellar oscillation, stellar spots) and any
instrumental noise not accounted for in the quoted measure-
ment uncertainties. We use standard priors for each parameter
(see Ford & Gregory 2007). The prior is uniform in the log of
the orbital period P, while for K and o; we used a modified
Jeffery’s prior (Gregory 2005). Priors for the remaining param-
eters are uniform: e (between zero and unity), w and M (between
zero and 2m), vy and yr. Following Ford (2006), we adopt a
likelihood (i.e., conditional probability of making the specified
measurements given a particular set of model parameters) of

exp [ — (veo — v)?/2047]

9
Vo2 + 02

p@l8, M) oc ] | 0]
k
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Table 2
Orbital Elements of MARVELS-5b

Parameter Units Value
P Period (days) 90.2695+90188
K RV semi-amplitude (m s~!) 2948.14*15:65
e Eccentricity 0.4375 £ 0.0040
® Argument of periastron (deg) —140.91 £ 0.54
To Epoch of periastron (HID) 2455563.73 £ 0.20
YM MARVELS systemic velocity (m sh 2573.71 + 11.31
vr TNG/SARG systemic velocity (m s~1) —374.69 £ 11.4
o Jitter (m s~ 1) 21.35’:64'.4977

where v, is observed velocity at time f, vgp is the model
velocity at time #; given the model parameters @, and oy is
the measurement uncertainty for the observation at time #.

To test the robustness of the MCMC analysis, we calculate
five Markov Chains starting from different initial states, each
for 5 x 107 states. To prevent the choice of initial states from
influencing our results, we consider only the second half of
each chain. We calculate the Gelman—Rubin test statistic (which
compares the variance of a parameter within each chain to the
variance between chains; Gelman & Rubin 1992) for each model
parameter. We find no indications that the Markov Chains have
yet to converge and conclude that the Markov Chains provide an
adequate posterior sample for inferring the orbital parameters
and uncertainties.

We combine the Markov Chains described above to estimate
the joint posterior probability distribution for the orbital model
of HIP 67526. For orbital eccentricity, we also used the I method
described in Wang & Ford (2011), which leads to a result sim-
ilar to that from the MCMC analysis. The median values are
taken for each model parameter based on the marginal poste-
rior probability distributions. The uncertainties are calculated
as the standard deviation about the mean value from the com-
bined posterior sample. Since the shape of the marginal posterior
distribution is roughly similar to a multivariate normal distribu-
tion, the median value plus or minus the reported uncertainty
roughly corresponds to a 68.3% confidence interval. Finally, we
convert the model parameters to traditional standard parameters
of a spectroscopic orbit and report the results in Table 2. The
phase-folded RV curve is presented in Figure 3.

2.2. SuperWASP Photometry

We searched the SuperWASP public archived database
(Butters et al. 2010) and found 1378 photometric data measure-
ments of HIP 67526 observed in 2004 and 5680 data points
in 2007. The mean absolute deviation of the light curve is
9.7 mmag. We first searched for a transit-like dip in brightness
at short periods between 0.2 and 10 days. We find no signifi-
cant detection of a transit event. Next, we searched for transits
specifically in the range of 85-95 days, which includes the best-
fit period from the spectroscopic RV curve. The phase-folded
data are sparsely covered at these long periods, and we find no
significant transit signal. In summary, we do not find a transit
in SuperWASP photometric data with a long or a short period.
We also attempted to search for a sinusoidal signal in the light
curve but found no significant signal.

2.3. Hipparcos Astrometry

HIP 67526 exists in the Hipparcos catalog with a parallax
distance of 100 £ 10 pc from the Sun. It is possible that the
orbital motion of the star due to the gravitational influence of
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its companion can be resolved by Hipparcos astrometry. This
would allow the inclination 7 and the ascending node Q of the
Keplerian orbit, and thus the true mass of MARVELS-5b, to
be well constrained (Sahlmann et al. 2011). We retrieved the
dataset of HIP 67526 from the Intermediate Astrometric Data
(IAD) of the new Hipparcos reduction (van Leeuwen 2007),
including the satellite orbit number, the epoch ¢, the parallax
factor I1, the scan angle orientation v, the abscissa residual
8A, and the abscissa error o for every satellite scan. There are
123 available Hipparcos scans on HIP 67526 in the IAD and
the average abscissa error is g, ~10 mas. Thus, the dataset
allows a lo detection of an orbit with an angular size of
ox/~v'N = 10/4/123 ~ 1 mas.

We then estimate the minimum angular semimajor axis (in
mas) of the primary’s orbit, which can be written as

agsini = 3.35729138 x 103K P/ 1 — e, 2)

where K (inm s™"), P (in yr), and e are the spectroscopic orbital
elements, & (in mas) is the parallax, and i is the unknown
inclination (Pourbaix 2001). This equation yields a minimum
angular semimajor axis ~0.2 mas for HIP 67526. Therefore, for
nearly edge-on orbits, the angular size of the primary’s orbit is
well below the 1o detection threshold, and thus the motion of
HIP 67526 about the system’s center-of-mass cannot be detected
for such geometries. Assuming that the Hipparcos data of HIP
67526 are consistent with no astrometric signal from the orbit
around the center-of-mass of the system, and that orbits of ~1,
~2, and ~3 mas would have been detected at 1o, 20, and 30,
we can place upper limits on the companion mass of ~0.33 M,
(1o), and ~0.80 My (20), and 1.49 My (30). As argued in
Section 3.3, such massive companions are a posteriori unlikely
to be flat or falling priors on the companion mass distribution.
For priors that increase with increasing mass, companions of

mass 0.5 My are not a posteriori implausible, but would be
ruled out based on the lack of evidence of a second set of
spectral lines in the high-resolution spectra, if the companion
was luminous (i.e., not a remnant).

3. OBSERVATIONS AND RESULTS FOR THE HOST STAR

3.1. Spectroscopic Parameters and Spectral Energy
Distribution Analysis

In order to characterize the host star HIP 67526, two
moderate-resolution spectra (R ~ 31,500) were taken with
the ARC Echelle Spectrograph (ARCES; Wang et al. 2003)
mounted on the Apache Point Observatory 3.5 m telescope on
UT 2010 June 10. The spectra cover the full optical range from
3600 A to 1.0 um. The spectra were obtained using the default
176 x 3’2 slit and an exposure time of 1200 s. The raw data
were processed using standard IRAF techniques. The extracted
one-dimensional spectra were converted to vacuum wavelengths
and to the heliocentric frame. The data were normalized by fit-
ting a series of polynomials to the continuum.

We utilized two individual pipelines to derive basic stellar
parameters such as T, log g, and [Fe/H] for the host star.
Both pipelines are based on the requirements of excitation
and ionization equilibria of Fe1 and Feu. However, different
versions of ATLAS9 plane-parallel model atmospheres (Kurucz
1993 and Castelli & Kurucz 2004) and different iteration
algorithms are implemented. We refer the readers to Wisniewski
etal. (2012) for more details on the pipelines. The derived stellar
parameters from these two pipelines are usually consistent to
within 1o of the associated errors. Thus, we simply adopted
the weighted average values as the final determined stellar
parameters. We combined the internal errors from the two
pipelines as 1/0% = 1 /012 + 1 /022 for each parameter, and
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Table 3

Stellar Parameters of HIP 67526
Parameter Result Note
B 10.303 £ 0.032 mag Kharchenko & Roeser (2009)
\%4 9.706 £ 0.027 mag Kharchenko & Roeser (2009)
J 8.598 £ 0.020 mag 2MASS
H 8.363 £ 0.049 mag 2MASS
K 8.295 £ 0.024 mag 2MASS
w1 8.226 £ 0.022 mag WISE
w2 8.283 £ 0.020 mag WISE
w3 8.260 £ 0.017 mag WISE
w4 8.063 £ 0.150 mag WISE
Tett 6004 £ 34 K Spectroscopy
log g (cgs) 4.55£0.17 Spectroscopy
[Fe/H] +0.04 £ 0.06 Spectroscopy
Viic 1.03 4 0.04 km s~ Spectroscopy
M, 1.10 £ 0.09 Mg Torres et al. (2010)
R, 0.92 +0.19 Rp Torres et al. (2010)
Ay 0.035 £ 0.035 mag SED Fitting
o 9.87 &+ 1.26 mas Hipparcos
M, 1.11 £ 0.08 M MCMC
R, 0.95*%1 Ro MCMC
Tefr 6004 + 34 K MCMC
log g (cgs) 4.534015 MCMC
[Fe/H] +0.04 £ 0.06 MCMC
@ 10.25*1% mas MCMC
Ay 0.043*%%53 mag MCMC

added in quadrature a systematic error of 18 K, 0.08, 0.03,
and 0.02 km s™! for Ty, log g, [Fe/H], and V., respectively
(Wisniewski et al. 2012). The final results are summarized in
Table 3.

We collected the optical and near-infrared absolute photom-
etry of HIP 67526 from the Hipparcos, Two Micron All Sky
Survey (2MASS), and Wide-field Infrared Survey Explorer
(WISE) catalogs (Table 3) to construct a spectral energy dis-
tribution (SED; see Figure 4) and fit it with a NextGen model
atmosphere (Hauschildt et al. 1999). The resultant stellar pa-
rameters, Ter = 5800 £ 200 K, log g (cgs) = 4.0 £ 1.0 and
[Fe/H] = 0.0 £ 0.5, are in good agreement with the parameters
derived from spectroscopy within the errorbars. In addition, the
SED fitting indicates that HIP 67526 suffers only slight extinc-
tion (Ay = 0.035 £ 0.035).

3.2. Stellar Mass and Radius

We determine the stellar mass and radius using two methods.
First, we use the empirical relationship of Torres et al. (2010)
with our values for Ti, log g, and [Fe/H]. Uncertainties in
the mass and radius are derived by adding in quadrature the
correlations of the best-fit coefficients from Torres et al. (2010)
and the scatter in the relation as reported in their study. The
correlations between the stellar parameters T.g, logg, and
[Fe/H] are not measured and are therefore not considered.
We find a mass M, = 1.10 & 0.09 My and a radius R, =
0.92 £0.19 R,

The existence of a trigonometric parallax provides additional
information to constrain the mass and radius of the primary
star. We incorporate this data by running an MCMC anal-
ysis that fully explores parameter space. One million itera-
tions in the MCMC were run, stepping through T, log g,
[Fe/H], parallax (z), and Ay. We use random starting values
to initiate the chain. For each iteration, we calculate a mass and
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Figure 4. Observed SED for HIP 67526 overplotted with the best-fit NextGen
model atmosphere emission. Blue points represent the expected fluxes in each
band based on the best-fit model, red horizontal bars are the bandpass widths,
and red vertical bars are the uncertainties of measured fluxes. The resultant
stellar parameters from this fit agreed to within 1o with the stellar parameters
determined from analysis of moderate-resolution ARCES spectra.

(A color version of this figure is available in the online journal.)

radius following Torres et al. (2010) and the iteration’s values
of Ty, log g, and [Fe/H]. A stellar luminosity is calculated via
the Stefan—Boltzmann law, then a bolometric correction to the
2MASS K band is applied by interpolating the table of correc-
tions as a function of T for [M/H] = 0.0 and log g = 4.5 from
Masana et al. (2006). The absolute K magnitude is calculated
from the luminosity and bolometric correction, after which the
apparent magnitude is calculated from the absolute magnitude
and the iteration’s values of @ and Ay.

After each iteration, a X2 statistic is calculated as the sum
of the individual x? for T, logg, [Fe/H], @, and Ay,
where the expected values for T, log g, and [Fe/H] are the
values determined spectroscopically, the expected value for @
comes from the Hipparcos catalog, and the expected value
for Ay comes from the SED analysis. The next iteration’s
trial parameters are selected using Gaussians centered on the
current iteration’s values with widths equal to the 1o parameter
uncertainties for T, [Fe/H], and Ay, and 0.1¢ forlog g and @ .
These widths were empirically determined such that the overall
trial acceptance rate was ~24%, close to the optimal value for
multi-dimensional chains (Gelman et al. 2003).

The first 1% of iterations are rejected as a burn-in period,
while the remaining iterations are used to determine the best-
fit final parameters (M,, R., Te, logg, [Fe/H], @, Av).
The 1o uncertainties are derived based on the cumulative
histogram of each parameter. For the stellar mass and radius
uncertainties, the reported scatter in Torres et al. (2010) is also
added in quadrature. Each parameter agrees to within 1o of the
spectroscopic/SED/catalog values, and these parameters are
tabulated in Table 3.

3.3. Mass of the Candidate Low-mass Companion

Using the spectroscopic orbital elements from the RV fit, we
can derive the mass function of the companion,

_ (Mcsini)®>  K3(1—e?)?p
F= M+ M) G

; 3)
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Figure 5. Cumulative probability that the mass of MARVELS-5D is less than a
given mass for three priors on the companion mass ratio: dN/dg o« g~ (solid
line), dN/dg = constant (dotted line), and dN/dg o< g*' (dashed line).

which is independent of the mass of the primary and the
inclination of orbit. For MARVELS-5b, we obtain

My = (1.742 +0.026) x 10~* Mo, )

where the uncertainty is essentially dominated by the uncer-
tainty in K (see Table 2). Assuming sini = 1, we derive
its minimum mass My, = 65.0+2.9Mjy,,. The uncertainty
here is dominated by the uncertainty in the primary mass (see
Table 3). We also find the minimum mass ratio of the companion
Gmin = 0.0560 £ 0.0015.

The true mass of the companion depends on the inclination
of its orbit, which is unknown. We can estimate the posterior
probability distribution of the true mass, assuming an isotropic
distribution of orbits and adopting a prior for the distribution
of the companion mass ratios. We therefore consider three
reasonable priors on the companion mass ratio of the form:
dN/dq x g%, wherea = —1, 0, +1 (e.g., Grether & Lineweaver
2006). The estimation was realized by using an MCMC, which
has been described in detail in Fleming et al. (2010) and Lee
et al. (2011). All sources of uncertainty from the mass function
and the primary mass have been considered appropriately. We
draw values of cosi from a uniform distribution and weight the
resulting distribution by ¢®*! in order to account for the mass
ratio prior. For « > 0, the a posteriori distribution does not
converge. However, we can rule out mass ratios ¢ > 1 for main-
sequence companions by the lack of a second set of spectral
lines in the high-resolution spectra. We therefore enforce ¢ < 1,
thus implicitly assuming the companion is not a stellar remnant.
The resultant cumulative distributions of the true companion
mass are presented in Figure 5, and we summarize the median
mass as well as the transit probability for each of our priors in
Table 4. For « < 0, MARVELS-5b is more likely to be a true
BD; for « = 0 or ¢ = 1, it is more likely to be a low-mass
stellar companion.
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Figure 6. Comparison of the observed stellar parameters of HIP 67526 with a
Yonsei—Yale stellar evolutionary track (Demarque et al. 2004) for an analogous
star with M, = 1.10 M and [Fe/H] = +0.04. The shaded region indicates
the 1o deviations in the evolutionary track. The blue dots are the location of
the analogous star at different ages in Gyr. HIP 67526 (in red) is most likely a
main-sequence dwarf star younger than ~2.5 Gyr, judging by the evolutionary
data alone, since most of the area within the 1o ellipsoid lies close to the ZAMS,
but its low level of activity suggests an age over ~3 Gyr, and thus it is most
likely a middle-aged star.

(A color version of this figure is available in the online journal.)

Table 4
Companion Mass for Different Priors
Assumed Prior Median Mass Transit Prob.
None (sini = 1) 65.0 Myup 100%
dN/dg o< g~ 75.6 Myyp 1.1%
dN/dg = const 95.3 Myup 0.7%
dN/dg  q*! 243.8 Myyp 0.2%

3.4. Evolutionary State of the Host Star

We estimate the evolutionary state of the host star HIP
67526 by comparing the measured stellar parameters with a
Yonsei—Yale stellar evolutionary track (Demarque et al. 2004)
for an analogous star with M, = 1.10 My and [Fe/H] =
0.04. The result is displayed in Figure 6. The dashed curves
represent the same evolutionary track but for stellar masses
40.08 M, which is the 1o uncertainty in the stellar mass from
the Torres et al. (2010) relation. The shaded region indicates
the lo deviations in the evolutionary track. The blue dots
are the location of the star at different ages. The evolutionary
data suggest a young star since most of the area of the lo
ellipsoid lies either below or very close to the zero-age main
sequence (ZAMS). However, using the APO spectroscopic data,
we measure the flux in the line cores of the Cau H and K
lines and calculate the activity index log(Ry), yielding —4.9.
This value points to an age of at least ~3 Gyr (e.g., Figure 11
of Mamajek & Hillenbrand 2008). Both the H-R diagram and
the HK activity levels, however, are poor age discriminants
in this range of parameters. Taken together, the evolutionary
and activity data point to a star no younger than 2-3 Gyr, and
probably no older than the Sun, a range compatible with both
criteria within the rather large errors. This range corresponds to
our best estimate of the age of HIP 67526.



THE ASTRONOMICAL JOURNAL, 146:65 (11pp), 2013 September

3.5. Direct Imaging Search for Visual Companions
3.5.1. FastCam Lucky Imaging

Lucky imaging (LI, observations taken at very high cadence
to achieve nearly diffraction-limited images from a subsample
of the total) was performed using FastCam (Oscoz et al. 2008)
on the 1.5 m Carlos Sanchez Telescope (TCS) at Observatorio
del Teide in Spain. The primary goal of these observations was
to search for companions at large separations that could contam-
inate spectroscopic observations of the target masquerading as
a systematic trend in the RV data (Fleming et al. 2012). The LI
frames were acquired on 2011 April 3, 2011 May 5, and 2011
May 8 in the I band and spanning ~21” x 21” on the sky. On
2011 April 3 a total of 100,000 short-exposure images, each cor-
responding to 35 ms exposure time were acquired, on 2011 May
5 a total of 45,000 short-exposure images, each corresponding
to 35 ms exposure time were acquired, and on 2011 May 8 a
total of 45,000 short-exposure images, each corresponding to
50 ms exposure time were acquired. The data were processed
using a custom IDL software pipeline. After identifying frames
corrupted due to cosmic rays, electronic glitches, etc., the re-
maining frames were bias corrected and flat fielded.

LI selection was applied using a variety of selection thresh-
olds (best X%) based on the brightest pixel (BP) method. The
selected BP must be below a specified brightness threshold
to avoid selecting cosmic rays or other non-speckle features.
As a further check, the BP must be consistent with the ex-
pected energy distribution from a diffraction speckle under
the assumption of a diffraction-limited point-spread function
(PSF). The BPs of each frame are then sorted from bright-
est to faintest, and the best X% are then shifted and added
to generate a final image. In Figure 7, we show the results
of the LI selection and shift-and-add for different LI thresh-
olds ranging from considering only the best 1% of the frames
up to including 80% of the data for data collected in 2011
April and 2011 May. Each panel covers ~5”5 x 5”5 centered
on HIP 67526. Restricting the LI selection to the top percent-
age (i.e., the 1% LI image) improves the angular resolution
with respect to choosing a lower threshold (i.e., the 80% LI
image) but at the cost of higher noise at large distances from
the target.

We follow the same procedure as in Femenia et al. (2011)
to compute the 30 detectability (Am) curves on each of the
images whose ~5”5 x 5”5 region around HIP 67526 has been
depicted in Figure 7: at a given angular distance p from HIP
67526 we identify all possible sets of small boxes of a size
larger but comparable to the FWHM of the PSF (i.e., 5 x 5 pixel
boxes). Only regions of the image showing structures easily
recognizable as spikes due to diffraction of the telescope spider
and/or artifacts on the read-out of the detector are dismissed.
For each of the valid boxes on the arc at angular distance p the
standard deviation of the image pixels within the 5 x 5 pixel
boxes is computed. The value assigned to the 30 detectability
curve at p is three times the mean value from the standard
deviations of all the eligible boxes at p. This procedure on each
of the LI % thresholding values (in steps of 1%) produces a
detectability curve, while the envelope of the entire family of
curves for a given night yields the best possible detectability
curve to be extracted from the whole data set. These “best LI
curves” for each of the three nights are depicted in Figure 8§,
where we can see the data collected are similar in quality to
the data on May 8 providing slightly better contrast values.
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Figure 7. Composite image showing the results of different LI thresholding on
the frames acquired with FastCam at the TCS telescope on 2011 April 3, 2011
May 5 and 2011 May 8. This set of images (in logarithmic scale) illustrates
the gain in angular resolution close to the target location when applying high
restrictive LI thresholds but at the cost of lowering the contrast achieved at large
angular distances from target location (see also Figure 8).
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(A color version of this figure is available in the online journal.)

No stellar tertiary to HIP 67526 is detected above the “best LI
curves.”

3.5.2. Keck Adaptive Optics Imaging

To further assess the multiplicity of HIP 67526, we acquired
high angular resolution images of the star on UT 2012 24 June
using NIRC2 (instrument PI: K. Matthew) with the Keck II
AO system (Wizinowich et al. 2000). AO observations probe
the immediate vicinity of host stars and generate deep contrast
compared to LI (e.g., Fleming et al. 2012; Ma et al. 2013).
Furthermore, AO observations are sensitive to objects with red
colors given the nominal 1-3 wm wavelength operating range.

Our observations consist of dithered frames taken with the
K’ (A, = 2.12 um) filter. We used the narrow camera setting
to provide fine spatial sampling of the NIRC2 PSF. The total
on-source integration time was 190 s. Images were processed
using standard techniques to replace hot pixel values, flat field
the detector array, subtract thermal background noise, and align
and coadd frames.
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Figure 8. Comparison of the best LI curves achieved on 2011 April 3,2011
May 5, and 2011 May 8. The 30 detectability (Am;) curves for individual
nights were first computed on the images obtained at different LI thresholds.
The best LI curves are the envelope of all detectability curves computed in steps
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Figure 9. Keck AO image of HIP 67526. No stellar companions are detected
with Amg < 5 mag for separations beyond 0725 and Amg < 8 mag for
separations beyond 170 at 100 significance level (see also Figure 10).

(A color version of this figure is available in the online journal.)

Figures 9 and 10 show the final reduced AO image and
corresponding contrast curve. No candidate companions were
noticed in individual raw frames or the final reduced image.
Our diffraction-limited observations rule out the presence of
companions with Amg < 5 mag for separations beyond 0/25
and Amg < 8 mag for separations beyond 170 (100). We
employ the empirical mass—luminosity relationships in Delfosse
et al. (2000) to derive the upper mass limit of the undetected
companions; this analysis results in an upper mass limit 0.2 M,
for separations larger than 40 AU and 0.1 M, for separations
larger than 100 AU.

4. DISCUSSION AND SUMMARY

The frequency of BD companions to solar-like stars at close
and intermediate separations is less than 1% (Marcy & Butler
2000), which is much less than the frequency of planetary
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Figure 10. Detectability (contrast curve) for the Keck AO image of HIP 67526.

companions (>10%;e.g., Howard et al. 2010; Mayor etal. 2011)
and the frequency of spectroscopic stellar binaries detected in
RV surveys (~14%; e.g., Halbwachs et al. 2003). The frequency
of BD companions was recently updated by Sahlmann et al.
(2011) to be <0.6% on the basis of the CORALIE planet-search
sample. This result is more accurate since the authors ruled out
companions having true masses in the stellar regime using the
Hipparcos astrometric measurements to determine the orbital
inclinations. Constraining the mass distribution of companions
can provide an important observational clue to distinguish the
formation and evolution mechanism of planetary, BD, and
stellar companions. The current mass distribution suggests that
low-mass BD companions less than ~30 My, are likely to
form in protoplanetary disks, while companions more massive
than ~45 My, form via fragmentation (Grether & Lineweaver
2006; Sahlmann et al. 2011; Ma & Ge 2013). The BD and
low-mass stellar companion discoveries from MARVELS will
result in a more precise determination of the mass limits of core
accretion and gravitational collapse. MARVELS-5b contributes
to constraining the shape of the massive BD-low-mass star
boundary.

Spectroscopic binaries generally show moderately eccentric
orbits (e.g., Duquennoy & Mayor 1991; Raghavan et al. 2010).
Ribas & Miralda-Escudé (2007) reported a tentative trend that
low-mass planets (M sini < 4 Mjy,,) generally have lower ec-
centricity than high-mass planets (M sini > 4 My,,), having
a similar eccentricity distribution as binary stars (Figure 3 of
Ribas & Miralda-Escudé 2007). Diaz et al. (2012) reported that
most of the BD companions in their sample exhibit a consider-
able orbital eccentricity, supporting the eccentricity-mass trend.
MARVELS-5b has a high eccentricity (~0.44), which is around
the peak of the eccentricity distribution of the observed BD and
low-mass stellar companions (Sahlmann et al. 2011; Diaz et al.
2012). In view of MARVELS-5b’s eccentricity, it is probably
a member of the main population of these massive compan-
ions to solar-like stars. Our previous MARVELS discoveries
(MARVELS-2,3.,4,6b) all have an eccentricity lower than ~0.2
(De Lee et al. 2013).

A stellar tertiary is likely to affect the formation and evolution
of the substellar companion to the primary. Observationally,
Zucker & Mazeh (2002) point out that planets found in binaries
may have a negative period—mass correlation rather than the
positive correlation between the masses and periods of the
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planets orbiting single stars. By studying a larger sample (19
planets in a double or multiple star system), Eggenberger et al.
(2004, 2007) showed that short-period (P < 40 days) planets
found in multiple star systems may follow a different period-
eccentricity distribution than the short-period planets around
isolated stars. These observations seem to indicate that the
presence of a stellar companion alters the migration and mass
growth rates of planets (Kley 2001). Similar influences have also
been observed on close spectroscopic binaries in triple systems.
Shorter period binaries are more likely to be in multiple-star
systems, i.e., ~80% for P < 7 days versus ~40% for P > 7 days
(Tokovinin et al. 2006). This significant difference suggests that
the periods of close binary systems with triples were efficiently
decreased by angular momentum exchange with companions.

With masses between planetary companions and stellar com-
ponents in spectroscopic binaries, the formation and migration
of BD and low-mass stellar companions can certainly be affected
by the presence of a tertiary as well. However, this problem has
not been studied in a statistical way since the current BD and
low-mass stellar companion sample is fairly small and no sys-
tematic survey of stellar tertiaries for these companions has been
conducted. Using high-contrast imaging, the MARVELS survey
goes to great lengths to investigate the statistics of its own dis-
coveries of low-mass companions in the presence/absence of a
stellar tertiary. As mentioned in Section 1, most of the previ-
ous MARVELS discoveries have a stellar tertiary (or a candi-
date stellar tertiary) detected either by high-contrast imaging or
analysis of the long-term RV trend. Among the confirmed dis-
coveries, MARVELS-3b (Wisniewski et al. 2012) has an orbital
period (P ~ 79 days) and minimum mass ratio (gmin, ~ 0.09)
similar to MARVELS-5b (this work), but the former has a less
eccentric orbit (e ~ 0.1). Wisniewski et al. (2012) found a faint
candidate tertiary companion on the Keck AO image, separated
by ~1” from the primary, thus speculating that MARVELS-3b
might have initially formed in a tertiary system with much dif-
ferent orbital parameters and reached its current short-period
orbit during the cluster dispersal phase. For MARVELS-5b, the
Keck AO imaging rules out any star with mass greater than
0.1 My at a separation larger than 1” from the primary. This
may imply that other formation mechanisms of low-mass-ratio
binaries are needed.

In summary, we report a candidate BD or low-mass stellar
companion to the solar-like star HIP 67526. The best Keplerian
orbital fit parameters were found to have an orbital period
of 90.2695?2)"(2)118887 days, an eccentricity of 0.4375 £ 0.0040,

and a semi-amplitude of 2948.14*1%%% m s~!. The minimum
companion mass was determined to be 65.0 &= 2.9Mjy,,. This
object helps to populate the high-mass end of the sparsely
populated region of the mass function of companions to solar-
type stars and provide observational evidence to constrain
formation and evolution theories. No stellar tertiary is detected
with high-contrast imaging for the MARVELS-5 system, while
all the other previous MARVELS-discovered systems appear to
have at least one stellar companion.
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