242 research outputs found

    A Top-Performing Algorithm for the DREAM3 Gene Expression Prediction Challenge

    Get PDF
    A wealth of computational methods has been developed to address problems in systems biology, such as modeling gene expression. However, to objectively evaluate and compare such methods is notoriously difficult. The DREAM (Dialogue on Reverse Engineering Assessments and Methods) project is a community-wide effort to assess the relative strengths and weaknesses of different computational methods for a set of core problems in systems biology. This article presents a top-performing algorithm for one of the challenge problems in the third annual DREAM (DREAM3), namely the gene expression prediction challenge. In this challenge, participants are asked to predict the expression levels of a small set of genes in a yeast deletion strain, given the expression levels of all other genes in the same strain and complete gene expression data for several other yeast strains. I propose a simple -nearest-neighbor (KNN) method to solve this problem. Despite its simplicity, this method works well for this challenge, sharing the “top performer” honor with a much more sophisticated method. I also describe several alternative, simple strategies, including a modified KNN algorithm that further improves the performance of the standard KNN method. The success of these methods suggests that complex methods attempting to integrate multiple data sets do not necessarily lead to better performance than simple yet robust methods. Furthermore, none of these top-performing methods, including the one by a different team, are based on gene regulatory networks, which seems to suggest that accurately modeling gene expression using gene regulatory networks is unfortunately still a difficult task

    Liposome-based liquid handling platform featuring addition, mixing, and aliquoting of femtoliter volumes

    Get PDF
    This paper describes the utilization of giant unilamellar vesicles (GUVs) as a platform for handling chemical and biochemical reagents. GUVs with diameters of 5 to 10 µm and containing chemical/biochemical reagents together with inert polymers were fused with electric pulses (electrofusion). After reagent mixing, the fused GUVs spontaneously deformed to a budding shape, separating the mixed solution into sub-volumes. We utilized a microfluidic channel and optical tweezers to select GUVs of interest, bring them into contact, and fuse them together to mix and aliquot the reaction product. We also show that, by lowering the ambient temperature close to the phase transition temperature Tm of the lipid used, daughter GUVs completely detached (fission). This process performs all the liquid-handing features used in bench-top biochemistry using the GUV, which could be advantageous for the membrane-related biochemical assays

    A minimal region of the HSP90AB1 promoter is suitable for ubiquitous expression in different somatic tissues with applicability for gene therapy

    Get PDF
    Huntington’s disease (HD) is a multi-tissue failure disorder for which there is no cure. We have previously shown an effective therapeutic approach limited mainly to the central nervous system, based on a synthetic zinc finger (ZF) transcription repressor gene therapy, but it would be important to target other tissues as well. In this study, we identify a novel minimal HSP90AB1 promoter region that can efficiently control expression not only in the CNS but also in other affected HD tissues. This promoter-enhancer is effective in driving expression of ZF therapeutic molecules in both HD skeletal muscles and the heart, in the symptomatic R6/1 mouse model. Moreover, for the first time we show that ZF molecules repressing mutant HTT reverse transcriptional pathological remodelling in HD hearts. We conclude that this HSP90AB1 minimal promoter may be used to target multiple HD organs with therapeutic genes. The new promoter has the potential to be added to the portfolio of gene therapy promoters, for use where ubiquitous expression is needed

    Statecharts for Gene Network Modeling

    Get PDF
    State diagrams (stategraphs) are suitable for describing the behavior of dynamic systems. However, when they are used to model large and complex systems, determining the states and transitions among them can be overwhelming, due to their flat, unstratified structure. In this article, we present the use of statecharts as a novel way of modeling complex gene networks. Statecharts extend conventional state diagrams with features such as nested hierarchy, recursion, and concurrency. These features are commonly utilized in engineering for designing complex systems and can enable us to model complex gene networks in an efficient and systematic way. We modeled five key gene network motifs, simple regulation, autoregulation, feed-forward loop, single-input module, and dense overlapping regulon, using statecharts. Specifically, utilizing nested hierarchy and recursion, we were able to model a complex interlocked feed-forward loop network in a highly structured way, demonstrating the potential of our approach for modeling large and complex gene networks

    Success in the DREAM3 Signaling Response Challenge Using Simple Weighted-Average Imputation: Lessons for Community-Wide Experiments in Systems Biology

    Get PDF
    Our group produced the best predictions overall in the DREAM3 signaling response challenge, being tops by a substantial margin in the cytokine sub-challenge and nearly tied for best in the phosphoprotein sub-challenge. We achieved this success using a simple interpolation strategy. For each combination of a stimulus and inhibitor for which predictions were required, we had noted there were six other datasets using the same stimulus (but different inhibitor treatments) and six other datasets using the same inhibitor (but different stimuli). Therefore, for each treatment combination for which values were to be predicted, we calculated rank correlations for the data that were in common between the treatment combination and each of the 12 related combinations. The data from the 12 related combinations were then used to calculate missing values, weighting the contributions from each experiment based on the rank correlation coefficients. The success of this simple method suggests that the missing data were largely over-determined by similarities in the treatments. We offer some thoughts on the current state and future development of DREAM that are based on our success in this challenge, our success in the earlier DREAM2 transcription factor target challenge, and our experience as the data provider for the gene expression challenge in DREAM3

    Layered Functional Network Analysis of Gene Expression in Human Heart Failure

    Get PDF
    BACKGROUND: Although dilated cardiomyopathy (DCM) is a leading cause of heart failure (HF), the mechanism underlying DCM is not well understood. Previously, it has been demonstrated that an integrative analysis of gene expression and protein-protein interaction (PPI) networks can provide insights into the molecular mechanisms of various diseases. In this study we develop a systems approach by linking public available gene expression data on ischemic dilated cardiomyopathy (ICM), a main pathological form of DCM, with data from a layered PPI network. We propose that the use of a layered PPI network, as opposed to a traditional PPI network, provides unique insights into the mechanism of DCM. METHODS: Four Cytoscape plugins including BionetBuilder, NetworkAnalyzer, Cerebral and GenePro were used to establish the layered PPI network, which was based upon validated subcellular protein localization data retrieved from the HRPD and Entrez Gene databases. The DAVID function annotation clustering tool was used for gene ontology (GO) analysis. RESULTS: The assembled layered PPI network was divided into four layers: extracellular, plasma membrane, cytoplasm and nucleus. The characteristics of the gene expression pattern of the four layers were compared. In the extracellular and plasma membrane layers, there were more proteins encoded by down-regulated genes than by up-regulated genes, but in the other two layers, the opposite trend was found. GO analysis established that proteins encoded by up-regulated genes, reflecting significantly over-represented biological processes, were mainly located in the nucleus and cytoplasm layers, while proteins encoded by down-regulated genes were mainly located in the extracellular and plasma membrane layers. The PPI network analysis revealed that the Janus family tyrosine kinase-signal transducer and activator of transcription (Jak-STAT) signaling pathway might play an important role in the development of ICM and could be exploited as a therapeutic target of ICM. In addition, glycogen synthase kinase 3 beta (GSK3B) may also be a potential candidate target, but more evidence is required. CONCLUSION: This study illustrated that by incorporating subcellular localization information into a PPI network based analysis, one can derive greater insights into the mechanisms underlying ICM

    A Quantitative Study of the Hog1 MAPK Response to Fluctuating Osmotic Stress in Saccharomyces cerevisiae

    Get PDF
    Background Yeast cells live in a highly fluctuating environment with respect to temperature, nutrients, and especially osmolarity. The Hog1 mitogen-activated protein kinase (MAPK) pathway is crucial for the adaption of yeast cells to external osmotic changes. Methodology/Principal Findings To better understand the osmo-adaption mechanism in the budding yeast Saccharomyces cerevisiae, we have developed a mathematical model and quantitatively investigated the Hog1 response to osmotic stress. The model agrees well with various experimental data for the Hog1 response to different types of osmotic changes. Kinetic analyses of the model indicate that budding yeast cells have evolved to protect themselves economically: while they show almost no response to fast pulse-like changes of osmolarity, they respond periodically and are well-adapted to osmotic changes with a certain frequency. To quantify the signal transduction efficiency of the osmo-adaption network, we introduced a measure of the signal response gain, which is defined as the ratio of output change integral to input (signal) change integral. Model simulations indicate that the Hog1 response gain shows bell-shaped response curves with respect to the duration of a single osmotic pulse and to the frequency of periodic square osmotic pulses, while for up-staircase (ramp) osmotic changes, the gain depends on the slope. Conclusions/Significance The model analyses suggest that budding yeast cells have selectively evolved to be optimized to some specific types of osmotic changes. In addition, our work implies that the signaling output can be dynamically controlled by fine-tuning the signal input profiles

    Scalable Steady State Analysis of Boolean Biological Regulatory Networks

    Get PDF
    Background: Computing the long term behavior of regulatory and signaling networks is critical in understanding how biological functions take place in organisms. Steady states of these networks determine the activity levels of individual entities in the long run. Identifying all the steady states of these networks is difficult due to the state space explosion problem. Methodology: In this paper, we propose a method for identifying all the steady states of Boolean regulatory and signaling networks accurately and efficiently. We build a mathematical model that allows pruning a large portion of the state space quickly without causing any false dismissals. For the remaining state space, which is typically very small compared to the whole state space, we develop a randomized traversal method that extracts the steady states. We estimate the number of steady states, and the expected behavior of individual genes and gene pairs in steady states in an online fashion. Also, we formulate a stopping criterion that terminates the traversal as soon as user supplied percentage of the results are returned with high confidence. Conclusions: This method identifies the observed steady states of boolean biological networks computationally. Our algorithm successfully reported the G1 phases of both budding and fission yeast cell cycles. Besides, the experiments suggest that this method is useful in identifying co-expressed genes as well. By analyzing the steady state profil

    A simple negative interaction in the positive transcriptional feedback of a single gene is sufficient to produce reliable oscillations

    Get PDF
    Negative and positive transcriptional feedback loops are present in natural and synthetic genetic oscillators. A single gene with negative transcriptional feedback needs a time delay and sufficiently strong nonlinearity in the transmission of the feedback signal in order to produce biochemical rhythms. A single gene with only positive transcriptional feedback does not produce oscillations. Here, we demonstrate that this single-gene network in conjunction with a simple negative interaction can also easily produce rhythms. We examine a model comprised of two well-differentiated parts. The first is a positive feedback created by a protein that binds to the promoter of its own gene and activates the transcription. The second is a negative interaction in which a repressor molecule prevents this protein from binding to its promoter. A stochastic study shows that the system is robust to noise. A deterministic study identifies that the dynamics of the oscillator are mainly driven by two types of biomolecules: the protein, and the complex formed by the repressor and this protein. The main conclusion of this paper is that a simple and usual negative interaction, such as degradation, sequestration or inhibition, acting on the positive transcriptional feedback of a single gene is a sufficient condition to produce reliable oscillations. One gene is enough and the positive transcriptional feedback signal does not need to activate a second repressor gene. This means that at the genetic level an explicit negative feedback loop is not necessary. The model needs neither cooperative binding reactions nor the formation of protein multimers. Therefore, our findings could help to clarify the design principles of cellular clocks and constitute a new efficient tool for engineering synthetic genetic oscillators.Comment: 25 pages, 12 figures, 3 table
    corecore