12,806 research outputs found

    Classical novae and type I X-ray bursts: challenges for the 21st century

    Full text link
    Classical nova explosions and type I X-ray bursts are the most frequent types of thermonuclear stellar explosions in the Galaxy. Both phenomena arise from thermonuclear ignition in the envelopes of accreting compact objects in close binary star systems. Detailed observations of these events have stimulated numerous studies in theoretical astrophysics and experimental nuclear physics. We discuss observational features of these phenomena and theoretical efforts to better understand the energy production and nucleosynthesis in these explosions. We also examine and summarize studies directed at identifying nuclear physics quantities with uncertainties that significantly affect model predictions.Comment: 40 pages, accepted for AIP Advances: Stardust - Progress and Problems in Nuclear Astrophysic

    Late biological effects of heavy charged particles: Cataracts, vascular injury and life shortening in mice

    Get PDF
    Risks associated with extended habitation in a space environment, particularly hazards to space workers that might result from exposure to high energy heavy ion particles (HZE), were studied. Biological effects of HZE were investigated in mice to assess their potential adverse health hazards. The potential effects of HZE particles on the crystalline lens of the eye and the carcinogenic effects and blood vessel (vascular) damage from radiation were evaluated by a risk assessment. Animal experiments to evaluate dose response relationships for tumor induction/promotion and for vascular injury were introduced. Cataract productions and preliminary results on cacinogenic and vascular effects are presented for perspective

    Comparison of velocity-based and traditional 1RM-percent-based prescription on acute kinetic and kinematic variables

    Get PDF
    Purpose: This study compared kinetic and kinematic data from three different velocity-based training (VBT) sessions and a 1-repetition maximum (1RM) percent-based training (PBT) session using full-depth, free-weight back squats with maximal concentric effort. Methods: Fifteen strength-trained men performed four randomized resistance-training sessions 96-hours apart: PBT session involved five sets of five repetitions using 80%1RM; load-velocity profile (LVP) session contained five sets of five repetitions with a load that could be adjusted to achieve a target velocity established from an individualized LVP equation at 80%1RM; fixed sets 20% velocity loss threshold (FSVL20) session that consisted of five sets at 80%1RM but sets were terminated once the mean velocity (MV) dropped below 20% of the threshold velocity or when five repetitions were completed per set; variable sets 20% velocity loss threshold (VSVL20) session comprised 25-repetitions in total, but participants performed as many repetitions in a set as possible until the 20% velocity loss threshold was exceeded. Results: When averaged across all repetitions, MV and peak velocity (PV) were significantly (p<0.05) faster during the LVP (MV: ES=1.05; PV: ES=1.12) and FSVL20 (MV: ES=0.81; PV: ES=0.98) sessions compared to PBT. Mean time under tension (TUT) and concentric TUT were significantly less during the LVP session compared to PBT. FSVL20 session had significantly less repetitions, total TUT and concentric TUT than PBT. No significant differences were found for all other measurements between any of the sessions. Conclusions: VBT permits faster velocities, avoids additional unnecessary mechanical stress but maintains similar measures of force and power output compared to strength-oriented PBT

    Can a workspace help to overcome the query formulation problem in image retrieval?

    Get PDF
    We have proposed a novel image retrieval system that incorporates a workspace where users can organise their search results. A task-oriented and user-centred experiment has been devised involving design professionals and several types of realistic search tasks. We study the workspace’s effect on two aspects: task conceptualisation and query formulation. A traditional relevance feedback system serves as baseline. The results of this study show that the workspace is more useful with respect to both of the above aspects. The proposed approach leads to a more effective and enjoyable search experience

    A Study of starless dark cloud LDN 1570: Distance, Dust properties and Magnetic field geometry

    Full text link
    We wish to map the magnetic field geometry and to study the dust properties of the starless cloud, L1570, using multi-wavelength optical polarimetry and photometry of the stars projected on the cloud. We made R-band imaging polarimetry of the stars projected on a cloud, L1570, to trace the magnetic field orientation. We also made multi-wavelength polarimetric and photometric observations to constrain the properties of dust in L1570. We estimated a distance of 394 +/- 70 pc to the cloud using 2MASS JHKs colours. Using the values of the Serkowski parameters namely σ1\sigma_{1}, ϵˉ\bar \epsilon, {\lambda}max and the position of the stars on near infrared color-color diagram, we identified 13 stars that could possibly have intrinsic polarization and/or rotation in their polarization angles. One star, 2MASS J06075075+1934177, which is a B4Ve spectral type, show the presence of diffuse interstellar bands in the spectrum apart from showing H{\alpha} line in emission. There is an indication for the presence of slightly bigger dust grains towards L1570 on the basis of the dust grain size-indicators such as {\lambda}max and Rv values. The magnetic field lines are found to be parallel to the cloud structures seen in the 250{\mu}m images (also in 8{\mu}m and 12{\mu}m shadow images) of L1570. Based on the magnetic field geometry, the cloud structure and the complex velocity structure, we believe that L1570 is in the process of formation due to the converging flow material mediated by the magnetic field lines. Structure function analysis showed that in the L1570 cloud region the large scale magnetic fields are stronger when compared with the turbulent component of magnetic fields. The estimated magnetic field strengths suggest that the L1570 cloud region is sub-critical and hence could be strongly supported by the magnetic field lines.Comment: 26 pages, 22 figures, and 7 tables; Accepted for its publication in A&

    Molecular Carbon Chains and Rings in TMC-1

    Get PDF
    We present mapping results in several rotational transitions of HC3N, C6H, both cyclic and linear C3H2 and C3H, towards the cyanopolyyne peak of the filamentary dense cloud TMC-1 using the IRAM 30m and MPIfR 100m telescopes. The spatial distribution of the cumulene carbon chain propadienylidene H2C3 (hereafter l-C3H2) is found to deviate significantly from the distributions of the cyclic isomer c-C3H2, HC3N, and C6H which in turn look very similar. The cyclic over linear abundance ratio of C3H2 increases by a factor of 3 across the filament, with a value of 28 at the cyanopolyyne peak. This abundance ratio is an order of magnitude larger than the range (3 to 5) we observed in the diffuse interstellar medium. The cyclic over linear abundance ratio of C3H also varies by ~2.5 in TMC-1, reaching a maximum value (13) close to the cyanopolyyne peak. These behaviors might be related to competitive processes between ion-neutral and neutral-neutral reactions for cyclic and linear species.Comment: Accepted for publication in The Astrophysical Journal, part I. 24 pages, including 4 tables, 7 figures, and figure caption
    • …
    corecore