10,049 research outputs found

    Development of dental composites with reactive fillers that promote precipitation of antibacterial-hydroxyapatite layers.

    Get PDF
    The study aim was to develop light-curable, high strength dental composites that would release calcium phosphate and chlorhexidine (CHX) but additionally promote surface hydroxyapatite/CHX co-precipitation in simulated body fluid (SBF). 80wt.% urethane dimethacrylate based liquid was mixed with glass fillers containing 10wt.% CHX and 0, 10, 20 or 40wt.% reactive mono- and tricalcium phosphate (CaP). Surface hydroxyapatite layer thickness/coverage from SEM images, Ca/Si ratio from EDX and hydroxyapatite Raman peak intensities were all proportional to both time in SBF and CaP wt.% in the filler. Hydroxyapatite was, however, difficult to detect by XRD until 4weeks. XRD peak width and SEM images suggested this was due to the very small size (~10nm) of the hydroxyapatite crystallites. Precipitate mass at 12weeks was 22wt.% of the sample CaP total mass irrespective of CaP wt.% and up to 7wt.% of the specimen. Early diffusion controlled CHX release, assessed by UV spectrometry, was proportional to CaP and twice as fast in water compared with SBF. After 1week, CHX continued to diffuse into water but in SBF, became entrapped within the precipitating hydroxyapatite layer. At 12weeks CHX formed 5 to 15% of the HA layer with 10 to 40wt.% CaP respectively. Despite linear decline of strength and modulus in 4weeks from 160 to 101MPa and 4 to 2.4GPa, respectively, upon raising CaP content, all values were still within the range expected for commercial composites. The high strength, hydroxyapatite precipitation and surface antibacterial accumulation should reduce tooth restoration failure due to fracture, aid demineralised dentine repair and prevent subsurface carious disease respectively

    The green infrastructure of a highly-urbanized neotropical city : the role of the urban vegetation in preserving native biodiversity

    Get PDF
    The composition of the urban vegetation that comprises the green infrastructure of a highly urbanized Neotropical city was mapped and described in order to assess how it can be used to preserve and maintain urban biodiversity. Supervised classification was used, followed by Map Algebra methodology, to identify the elements that comprise the green infrastructure of the southern region of Belo Horizonte (Minas Gerais, Brazil). Species composition of the street trees community was also assessed. Almost half of the study area is occupied by 12 types of woody and herbaceous vegetation, composed mostly by urban parks and gardens. Forty-one percent of the almost 90,000 street trees is composed by 10 species from which only four are native. These results show that the green infrastructure of this urban landscape is comprised by a large amount of different types of green elements, and has a great potential for biodiversity conservation. However, management strategies are needed such as better planning of the urban afforestation process, increasing street tree species richness. This study is the first step towards a better understanding of how such urban landscape influences local biodiversity

    Contour evolution method for precise boundary delineation of medical images

    Get PDF
    Image segmentation is an important precursor to boundary delineation of medical images. One of the major challenges in applying automatic image segmentation in medical images is the imperfection in the imaging process which can result in inconsistent contrast and brightness levels, and low image sharpness and vanishing boundaries. Although recent advances in deep learning produce vast improvements in the quality of image segmentation, the accuracy of segmentation around object boundaries still requires improvement. We developed a new approach to contour evolution that is more intuitive but shares some common principles with the active contour model method. The method uses two concepts, namely the boundary grid and sparse boundary representation, as an implicit and explicit representation of the boundary points. We tested our method using lumbar spine MRI images of 515 patients. The experiment results show that our method performs up to 10.2 times faster and more flexible than the geodesic active contours method. Using BF-score contour-based metric, we show that our method improves the boundary accuracy from 74% to 84% as opposed to 63% by the latter method

    Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: dissolution behaviour and biological properties after crystallisation.

    Get PDF
    Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) were synthesised by the sol-gel method as possible implant coating or bone-grafting materials. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride were incorporated for the preparation of the FHA and FA sol-gels. After heating and powdering the sol-gels, dissolution behaviour was assessed using ion chromatography to measure Ca(2+) and PO4 (3-) ion release. Biological behaviour was assessed using cellular proliferation with human osteosarcoma cells and alamarBlue™ assay. Statistical analysis was performed with a two way analysis of variance and post hoc testing with a Bonferroni correction. Increasing fluoride substitution into an apatite structure decreased the dissolution rate. Increasing the firing temperature of the HA, FHA and FA sol-gels up to 1,000 °C decreased the dissolution rate. There was significantly higher cellular proliferation on highly substituted FHA and FA than on HA or Titanium. The properties of an implant coating or bone grafting material can be tailored to meet specific requirements by altering the amount of fluoride that is incorporated into the original apatite structure. The dissolution behaviour can further be altered by the temperature at which the sol-gel is fired

    Decision-Making for Rewilding: An Adaptive Governance Framework for Social-Ecological Complexity

    Get PDF
    Rewilding can be defined as the reorganisation or regeneration of wildness in an ecologically degraded landscape with minimal ongoing intervention. While proposals for rewilding are increasingly common, they are frequently controversial and divisive amongst stakeholders. If implemented, rewilding initiatives may alter the social-ecological systems within which they are situated and thus generate sudden and unforeseen outcomes. So far, however, much of the discourse on the planning and implementation of rewilding has focused on identifying and mitigating ecological risks. There has been little consideration of how rewilding could alter the human components of the social-ecological systems concerned, nor governance arrangements that can manage these dynamics. This paper addresses this gap by proposing a generic adaptive governance framework tailored to the characteristics of rewilding, based on principles of managing complex social-ecological systems. We integrate two complementary natural resource governance approaches that lend themselves to the contentious and unpredictable characteristics of rewilding. First, adaptive co-management builds stakeholder adaptive capacity through iterative knowledge generation, collaboration and power-sharing, and cross-scale learning networks. Second, social licence to operate establishes trust and transparency between project proponents and communities through new public-private partnerships. The proposed framework includes structural and process elements which incorporate a boundary organisation, a decision-into-practise social learning exercise for planning and design, and participatory evaluation. The latter assesses rewilding outcomes and pre-conditions for the continuation of adaptive governance and conservation conflict resolution

    Biomolecular imaging and electronic damage using X-ray free-electron lasers

    Full text link
    Proposals to determine biomolecular structures from diffraction experiments using femtosecond X-ray free-electron laser (XFEL) pulses involve a conflict between the incident brightness required to achieve diffraction-limited atomic resolution and the electronic and structural damage induced by the illumination. Here we show that previous estimates of the conditions under which biomolecular structures may be obtained in this manner are unduly restrictive, because they are based on a coherent diffraction model that is not appropriate to the proposed interaction conditions. A more detailed imaging model derived from optical coherence theory and quantum electrodynamics is shown to be far more tolerant of electronic damage. The nuclear density is employed as the principal descriptor of molecular structure. The foundations of the approach may also be used to characterize electrodynamical processes by performing scattering experiments on complex molecules of known structure.Comment: 16 pages, 2 figure

    Screening and classifying small-molecule inhibitors of amyloid formation using ion mobility spectrometry-mass spectrometry

    Get PDF
    The search for therapeutic agents that bind specifically to precursor protein conformations and inhibit amyloid assembly is an important challenge. Identifying such inhibitors is difficult because many protein precursors of aggregation are partially folded or intrinsically disordered, which rules out structure-based design. Furthermore, inhibitors can act by a variety of mechanisms, including specific or nonspecific binding, as well as colloidal inhibition. Here we report a high-throughput method based on ion mobility spectrometry–mass spectrometry (IMS–MS) that is capable of rapidly detecting small molecules that bind to amyloid precursors, identifying the interacting protein species and defining the mode of inhibition. Using this method we have classified a variety of small molecules that are potential inhibitors of human ​islet amyloid polypeptide (​hIAPP) aggregation or ​amyloid-beta 1-40 aggregation as specific, nonspecific, colloidal or non-interacting. We also demonstrate the ability of IMS–MS to screen for inhibitory small molecules in a 96-well plate format and use this to discover a new inhibitor of ​hIAPP amyloid assembly

    Automated measurement of anteroposterior diameter and foraminal widths in MRI images for lumbar spinal stenosis diagnosis

    Get PDF
    Lumbar Spinal Stenosis causes low back pain through pressures exerted on the spinal nerves. This can be verified by measuring the anteroposterior diameter and foraminal widths of the patient’s lumbar spine. Our goal is to develop a novel strategy for assessing the extent of Lumbar Spinal Stenosis by automatically calculating these distances from the patient’s lumbar spine MRI. Our method starts with a semantic segmentation of T1- and T2-weighted composite axial MRI images using SegNet that partitions the image into six regions of interest. They consist of three main regions-of-interest, namely the Intervertebral Disc, Posterior Element, and Thecal Sac, and three auxiliary regions-of-interest that includes the Area between Anterior and Posterior elements. A novel contour evolution algorithm is then applied to improve the accuracy of the segmentation results along important region boundaries. Nine anatomical landmarks on the image are located by delineating the region boundaries found in the segmented image before the anteroposterior diameter and foraminal widths can be measured. The performance of the proposed algorithm was evaluated through a set of experiments on the Lumbar Spine MRI dataset containing MRI studies of 515 patients. These experiments compare the performance of our contour evolution algorithm with the Geodesic Active Contour and Chan-Vese methods over 22 different setups. We found that our method works best when our contour evolution algorithm is applied to improve the accuracy of both the label images used to train the SegNet model and the automatically segmented image. The average error of the calculated right and left foraminal distances relative to their expert-measured distances are 0.28 mm (p = 0.92) and 0.29 mm (p = 0.97), respectively. The average error of the calculated anteroposterior diameter relative to their expert-measured diameter is 0.90 mm (p = 0.92). The method also achieves 96.7% agreement with an expert opinion on determining the severity of the Intervertebral Disc herniations
    • …
    corecore