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 Image segmentation is an important precursor to boundary delineation  

of medical images. One of the major challenges in applying automatic image 

segmentation in medical images is the imperfection in the imaging process 
which can result in inconsistent contrast and brightness levels, and low image 

sharpness and vanishing boundaries. Although recent advances in deep learning 

produce vast improvements in the quality of image segmentation, the accuracy 

of segmentation around object boundaries still requires improvement. We 
developed a new approach to contour evolution that is more intuitive but shares 

some common principles with the active contour model method. The method 

uses two concepts, namely the boundary grid and sparse boundary 

representation, as an implicit and explicit representation of the boundary points. 
We tested our method using lumbar spine MRI images of 515 patients. The 

experiment results show that our method performs up to 10.2 times faster and 

more flexible than the geodesic active contours method. Using BF-score 

contour-based metric, we show that our method improves the boundary 
accuracy from 74% to 84% as opposed to 63% by the latter method. 
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1. INTRODUCTION 

A basic problem in computer vision is to understand the high level of information contained in  

an image or a series of images. Many of the tasks in computer vision may look trivial when performed by  

a human. Tasks such as detecting and distinguishing faces and objects in images, or classifying hand gestures 

in videos are some of the examples of a problem that humans can do with relative ease but could be  

a challenge for a computer to perform. More complex tasks such as detection of anomalies in medical images 

pose an even greater challenge due to its high accuracy requirement and high-risk failure consequences.  

Understanding medical images requires a specific set of skills and many years of experience 

working as a medical practitioner such as a radiologist. Thus, in building a computer-aided diagnosis (CAD) 

system, it is necessary to adopt the working procedure of the relevant radiologist and model it as  

an algorithm that computers can execute. This process is a complex task and may require an application  

of several image processing and computer vision techniques that as a whole complement each other.  

Image segmentation and boundary delineation are two important tasks in many modern image analysis 

processes including computer-assisted diagnosis through medical image analysis. 

https://creativecommons.org/licenses/by-sa/4.0/
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Image segmentation has been successfully applied in many CAD systems working on many 

different types of medical images. Traditionally, image segmentation is achieved using clustering methods, 

such as genetic algorithm [1] and fuzzy-means [2], of a number of manually designed low-level features such 

as pixel values distribution and histograms of gradients. Stochastic methods are also a popular approach in 

image segmentation. A regression segmentation framework to detect vascular anomalies in cardiac magnetic 

resonance imaging (MRI) images by delineating boundaries of bi-ventricle from was proposed [3]. In this 

framework, a regression model has been trained automatically on a deep belief network by using extracted 

DAISY feature [4] as input and using automatically generated boundary points as labels. The method was 

reported to yield high performance when tested on 2,900 images taken from 145 clinical subjects. 

One of the major challenges in applying automatic image segmentation in medical images such as 

CT and MRI is the imperfection in the imaging process which can often result in inconsistent contrast and 

brightness levels, and low image sharpness and vanishing boundaries. Recent advances in deep learning 

produce vast improvements in the quality of image segmentation. As a result, research in this field has shifted 

its focus to using more contemporary techniques such as convolution neural networks [5, 6] and random 

forest [7]. In one of our earlier publications [5], we proposed a novel method for image segmentation and 

boundary delineation to assist diagnosis of lumbar spinal stenosis in MRI images using SegNet [8]. 

It is noted the accuracy of deep learning classifiers may also depend on the accuracy of the ground 

truth labels that are used to train the models. Producing label images manually is a laborious and lengthy 

process. It is very unlikely that medical experts’ time is used to carry out this activity for hundreds or  

even thousands of images. Even if their time is used to label a few, they may not have the necessary skills  

in using digital applications to produce accurate segmentation. A practical solution to this is to have  

the medical experts to train several skilled image labellers on the important principles and what features to 

look for and assign the labellers to produce the ground truth label images for the classifier training. However, 

even with this approach, there is still a high level of probabilities of inaccuracies, especially along region 

boundaries [9]. 

To improve the segmentation accuracy along region boundaries, an active contour model can be 

applied to the label images. However, in our study of the important principles on image labeling provided by 

medical experts, we found that the existing active contour models have a number of drawbacks when are 

used to label medical images [10]. Thus, we develop a new approach to contour evolution that is more 

intuitive but shares some common principles with the active contour model method. Through analysis of  

our experimental results, we show that our method has several properties that help overcome the problems in 

the existing active contour models.  

This paper starts by discussing the principle of active contour models which is followed by  

the description of the problems in applying these to medical images. The design of our solution is provided in 

section 3 followed by the analysis of the experimental results in section 4. We use the lumbar spine images 

that we have collected [11] and their associated label images [12] in our experiment. This dataset contains 

axial MRI scans of the last three intervertebral discs of 515 patients. 

 

 

2. ACTIVE CONTOUR MODEL 

Active contour model has been used to segment and delineate boundaries in different types  

of medical images such as echocardiographs [13], MRI [14], and Computed Tomography (CT) [15].  

It is a popular class of image segmentation and boundary delineation method due to its ability to fit a curve to 

an object boundary by iteratively expanding or contracting its boundary estimate. The iterative process starts 

by defining an initial contour 𝐶0 and at each iteration 𝑡, the contour 𝐶𝑡 evolves from the previous iteration 

𝐶𝑡−1 such that 𝐶𝑡 = 𝐶𝑡−1 +
𝑑𝐶

𝑑𝑡
× ∆𝑡, where 

𝑑𝐶

𝑑𝑡
 is the contour evolution speed. The contour evolution speed is 

not a singular entity but rather a multi-value one as it is defined adaptively for each point 𝑠 along the contour 

position at each iteration. This is illustrated in Figure 1.  

The contour evolution speed, i.e., the red arrow illustrated in Figure 1, (which is often also referred 

to as Force denoted as 𝐹), is the movement of each point along the contour. The force has direction 

perpendicular to the tangent of the curve. The value of 𝐹 depends on local properties such as curvature, 

global properties such as shape, and other independent properties [16]. One of the earliest and most popular 

active contour models is Snake [17]. It can arguably be considered as the basis of almost all subsequent 

active contour models to date. In this model, the force is calculated to minimize an energy function 𝐸 that  

is a function of the curve’s internal factors e.g., the first and second-order derivatives of the curve as well as 

external factors (e.g., image dependent features such as image gradient or edges). The value of 𝐸  
is the integral of three components expressed in the (1): 

 



TELKOMNIKA Telecommun Comput El Control   

 

Contour evolution method for precise boundary delineation of medical images (Friska Natalia) 

1623 

𝐸 = 𝛼 ∫ |𝐶′|2𝑑𝑠
1

0

+ 𝛽 ∫ |𝐶′′|2𝑑𝑠
1

0

+ 𝛾 ∫ |feature(𝐶)|2𝑑𝑠
1

0

 (1) 

 

where 𝐶′ =
𝑑𝐶

𝑑𝑠
, 𝐶′′ =

𝑑2𝐶

𝑑𝑠2, and feature(𝐶) is the image feature value calculated at the contour location.  

The model uses three parameters to control the effect of each component on the contour evolution. 

Parameters 𝛼 and 𝛽 control the contribution of the internal factors whereas 𝛾 controls the contribution  

of the external factors. Almost all of the subsequently proposed active contour models in the literature  

are based on this principle. Differences amongst them are mainly on the different ways of calculating  

and determining each of the three components and their parameters. 

 

 

 
 

Figure 1. The evolution of the contour 𝐶𝑡 (brown line) at time 𝑡 from the previous contour 𝐶𝑡−1 (blue line) 

with the red arrows marking the contour evolution speed at each position on the contour 

 

 

The implementation of the Snake active contour algorithm uses the zero level set (ZLS)  

framework [18]. This framework propagates a shape boundary perpendicularly to the contour by means  

of an Eulerian formulation. Instead of representing the boundary and solve the evolution parametrically,  

ZLS represents 2D contours implicitly as a set of points of where the value of a function crosses zero  

(either from positive to negative, or vice versa). This function is an everywhere-differentiable image function 

𝜙:  →  with domain   2
. The function 𝜙 is a special image function that is derived from a label 

image. Given a binary image denoting a closed set of labelled pixels with two classes namely 𝐴 and ¬𝐴, 

where 𝐴 is the class of the object of interest in the image and ¬𝐴 is its complement class, the function 𝜙 has 

a negative value at pixels that belong to 𝐴 and a positive value at pixels which do not. Since 𝜙 is 

differentiable everywhere, its value should be zero, or close to zero, at boundary locations between 𝐴 and ¬𝐴 

regions. The function is often illustrated in 3D with the 𝑥 and 𝑦 axes making up the image plane and the 𝑧 for 

the value of the function. The intersection of the function with the 𝑧 = 0 plane will create an outline of  

the boundary of the two regions in a segmented image. This set of points is called zero level set and is 

denoted as . Contour evolution using the ZLS method is achieved by evolving the 𝜙 function, hence  

the state of the function at iteration 𝑡 is denoted specifically as 𝜙𝑡. Therefore, at any iteration 𝑡, the zero-level 

set 𝑡 = {(𝑥, 𝑦)|𝜙𝑡 = 0} contains the intermediate solution to the boundary delineation problem. The process 

to construct 𝜙 from a binary label image is illustrated in Figure 2. 

The initial value of 𝜙, i.e., the state of the function at the start of the iteration, denoted as 𝜙0 can be 

calculated from the initial segmented image. The initial segmented image is a binary image with pixel values 

of 1 for every pixel that is inside the shape and 0 otherwise as shown in Figure 2 (a). One popular method to 

construct 𝜙 from a segmented image is by calculating the signed distance function (sdf) [19]. For each pixel,  
𝜙 is calculated as the distance between that pixel to the closest point on . This may sound like  

an egg-and-chicken problem with regards to 𝜙 and , but in practice, the 𝑠𝑑𝑓 can be calculated using  

the Euclidian distance transform (Edt) of the binary segmented image. More precisely, the 𝑠𝑑𝑓 is calculated 

as the difference of the Euclidian distance transform of the binary segmented image and the Euclidian 

distance transform of the inverse of the binary segmented image, i.e., 

 

𝑠𝑑𝑓 = 𝐸𝑑𝑡(𝐵) − 𝐸𝑑𝑡(¬𝐵) (2) 

 

where 𝐵 is the binary segmented image and ¬𝐵 is its inverse. A distance transform is an operator that  

is applied to every pixel in its input binary image to calculate the distance between the pixel to the nearest 

non-zero pixel [20]. Figure 2 (b) and Figure 2 (c) show the corresponding 𝑠𝑑𝑓 of the binary image in 2D and 

3D, respectively. 
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Using ZLS, the evolution of the contour is achieved through an evolution of this signed distance 

function. The first 𝑠𝑑𝑓, 𝜙0 is required as the initial value to start with. The relationship between the new 𝑠𝑑𝑓 

and the contour evolution speed 𝐹 is given as the level set equation [16]: 

 

𝜙𝑡 = −𝐹 × |𝛻𝜙𝑡−1| (3) 

 

since its introduction, there are a number of variations of the ZLS framework. Some methods apply  

different energy minimization procedures whereas others use different image features when calculating 𝐹. 

One of the most popular is the edge-based Geodesic Active Contours (GAC) [21]. In this approach, the force 

𝐹 acting on the signed distance function is calculated as: 

 

𝐹 = 𝛼𝑔𝐼 + 𝛽 + 𝛾(𝛻𝑔𝐼�⃑⃑� ) (4) 

 

where 𝑔𝐼 is the speed function component derived from the feature of the input image 𝐼. When a positive 

value of 𝛼 is used, this component always acts outward to drive the contour to expand. The second 

component of the speed function, , is the mean curvature of the contour. The parameter 𝛽 hence controls  

the smoothness of the evolving contour. The third component, ∇𝑔𝐼�⃑⃑�  is the advection force that draws  

the contour towards the nearest edges along the normal vector of the contour. 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 2. An illustration of the construction of the signed distance function from a binary label image;  

(a) input label image is used to develop it, (b) corresponding 𝑠𝑑𝑓,  

(c) shows the same 𝑠𝑑𝑓 as viewed in 3D with its zero level set marked in red 
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As the name suggests, the GAC method calculates the feature 𝑔𝐼 using the gradient magnitude 

information of the input image. In particular, it is calculated per pixel as: 

 

𝑔𝐼 =
1

1 + |𝑓|2
 (5) 

 

where the feature used is 

 

𝑓 =
‖𝛻(𝐺𝜎 ∗ 𝐼)‖

𝑚𝑎𝑥‖𝛻(𝐺𝜎 ∗ 𝐼)‖
 (6) 

 

this feature is more popularly known as the normalized gradient magnitude of the input image 𝐼.  

The operation (𝐺𝜎 ∗ 𝐼) is a convolution of the image 𝐼 with a Gaussian kernel 𝐺𝜎  with width 𝜎. 

 

2.1. Drawbacks in using active contour models to segment medical images 

Accurate segmentation of images, including medical images, with significant intensity 

inhomogeneity within the same region, is often difficult to achieve [22]. In our study of several medical 

image types, topology, and geometry, and while guided by the relevant medical experts, we found that  

the existing active contour models have a number of drawbacks when they are used to segment medical 

images. Although in this paper we only focus on the segmentation of lumbar spine MRI images as a case 

study, our rationale and findings should apply generally. 

Borrowing from the approach we took in our previous study when delineating this type  

of images [5] to detect lumbar spinal stenosis [23], there are five regions of interests in each image. They  

are the intervertebral discs (IVD), posterior element (PE), thecal sac (TS), area between anterior and posterior 

(AAP) vertebrae elements, and Other (OT). The drawbacks that we found are summarized as follow: 

− The true boundary of an object region may not be found by just using a single type of image features 

because it could depend on several different ones. For example, the boundary between the IVD with AAP 

regions is characterized by strong pixel intensity differences however the boundary between IVD and TS 

is not. Therefore, if the image gradient feature alone is used to improve the boundary of IVD it may result 

in its deterioration instead. While many different models of active contour algorithms have been proposed 

in the literature which use different types of image features, there is none, to the best of our knowledge, 

which allows multiple different ones to be adaptively applied along the curvature. 
− The inclusion of all three components of speed functions in one calculation makes it harder to find  

the right combination to yield the best results. The effect of adjusting one control parameter may counter 

the effect of adjusting the others. In GAC, for example, generally using a large γ value pushes the contour 

harder towards an edge resulting in a contour evolution that moves strongly towards hard edges which 

will make it fits these edges rigidly. However, increasing the value of β could cancel that effect out 

because it penalizes high curvature. As a result, finding the right combination of parameter values is very 

tricky and can be application dependent. This phenomenon is illustrated in Figure 3, that shows  

the delineation of an unmodified label image (Figure 3 (a)) and the effects of applying the GAC algorithm 

using different combinations of γ and β values to the label image (Figure 3 (b)). The boundary of each 

region pair is color-coded to allow easier inspection. The figure shows that having low values of γ and β 

produces the worst results (top row and first four columns). The results are better when a large value of β 

is used (top row–fifth column). While fixing this β value, the effect of changing γ values does not produce 

significantly different results (last column). However, when the largest γ value is used the effect of 

changing β appears to reverse. This time lowering β value shows an improvement in the quality of  

the delineation. 
On a further note, we notice that most active contour models are applied mainly to an image in 

its original size. This limits the precision of boundary points to half a pixel. Increasing the size  

by up sampling the image and its label 𝑘 number of times, where 𝑘 ∈ ℕ, can increase the precision to  

the nearest 2−(𝑘+1). However, this approach significantly increases the number of pixels to consider and  

our experience shows that active contour models can scale poorly with the number of pixels. Based on  

these factors, we specify three requirements that must be met for a suitable contour evolution method.  

They are 1) it must allow an application of evolution on a subset of contour as opposed to the entire  

contour. This will make it possible to tailor the evolution process using different image feature type for 

different parts of the contour and 2) it should decouple the different components of evolution function so that 

the boundary fitting can be optimized independently in each component space. Lastly, as the third 

requirement 3) the method must scale well with the increase in pixel numbers due to up sampling to increase 

the delineation precision. 



                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 3, June 2020:  1621 - 1632 

1626 

 
(a) 

 

 

 

 

 

 
(b) 

 

Figure 3. (a) Delineation of the original label image of a lumbar spine MRI image,  

(b) The result of applying the GAC algorithm using different combinations of 𝛾 and 𝛽 values;  

From left to right, the 𝛾 values used are 0.1, 0.5, 1.0, 1.2, and 5.0.  

From top to bottom the 𝛽 values used are 0.1, 0.5, 1.0, and 1.2. The value of 𝛼 is fixed at 1 throughout 

 

 

3. THE PROPOSED CONTOUR EVOLUTION METHOD 

Image segmentation is a process that clusters pixels into multiple regions. The most straightforward 

way to represent the regions in an image is by using a matrix of labels with the same size as the original 

image. As an example, an instance where a 4x4 image that is segmented into three regions is illustrated  

in Figure 4. The figure depicts the region boundaries as red lines between pixels that have different labels. 
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Figure 4. (a) An example of a4x4 image, (b) The image segmented into three regions 

 

 

3.1.  Boundary information representations 

Boundary locations are naturally sub-pixels because it exists between adjacent pixels. They can be 

stored as a boundary grid, 𝐵 which is a matrix whose size is twice that of the label image minus one. A version 

of the Boundary Grid that is used in [24] using the label image shown in Figure 4 (b) is shown in Figure 5. 

 

 

 
 

Figure 5. Boundary Grid of the label image shown in Figure 4 (b) 

 

 

In the above example, cells with boundary information are shaded in red. Not all cells in a boundary grid can be 

boundary cells and in general only cells that have either 1) an even row number and an odd column number or 

2) an even column number and an odd row number can be boundary cells. Furthermore, boundary cells in 

category (1) mark only horizontal boundaries whereas those in category (2) mark only vertical boundaries. Any 

of the cells that meet the criteria but are not boundary cells are illustrated as blank squares. 

We made a small modification to this idea by including image feature values into these cells. The type 

of image feature chosen is a design decision and it is important to the accuracy and suitability of the algorithm 

to a given problem. However, in this paper, we use a similar type of image feature as GAC to ensure its direct 

relevance when comparing to the latter. We refer to this modification as the modified boundary grid, denoted as 

𝐵′. The image function of 𝐵′ is given as: 
 

𝐵′ : {

 → ℒ |  (1 𝑚𝑜𝑑 2)  ≠  0 ∧  (2 𝑚𝑜𝑑 2)  ≠  0

 →  | (1 𝑚𝑜𝑑 2) = 0 ⊕ (2 𝑚𝑜𝑑 2) = 0 
 → Ø | 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

    (7) 

 

where 𝑖 is the 𝑖𝑡ℎ element of  and ℒ = {1, … , 𝑁} where 𝑁 is the maximum number of regions in the image.  

The algorithm to construct our 𝐵′ is as follows: Let 𝐼:  →  be the input image function and 

 :  → ℒ be its associated label image function, both with domain   2
. At locations where (1 mod 2)  ≠

 0 ∧ (2 mod 2)  ≠  0, 𝐵′ contains the label information as prescribed in . At locations where (1 mod 2) = 0 ∧

(2 mod 2)  ≠  0, 𝐵′ contains vertical gradients and at locations where (1 mod 2) ≠ 0 ∧  (2 mod 2) =  0, 𝐵′ 

contains horizontal gradients. 

In practice, the gradient values are calculated using the convolution of the input image 𝐼  

with a Gaussian kernel 𝐺𝜎  of width 𝜎 to minimize high-frequency elements in the derivative operation. 

Hence the horizontal and vertical gradient image functions 𝑔ℎ :  →  and 𝑔𝑣:  →  are defined as  

𝑔ℎ = ∇ℎ(𝐺𝜎 ∗ 𝐼) and 𝑔𝑣 = ∇𝑣(𝐺𝜎 ∗ 𝐼), respectively. The size of the horizontal and vertical gradient  

images are 𝐻 × (𝑊 − 1) and (𝐻 − 1) × 𝑊, respectively. To illustrate the process to construct our 𝐵′ let’s 

assume that the horizontal and vertical gradient images of the input images we used previously are shown in 

Figure 6 (a) and Figure 6 (b), respectively. The resulting 𝐵′ is shown in Figure 6 (c). 
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Figure 6. Gradient images of the input image shown in Figure 5 (a),  

(a) horizontal, (b) vertical, (c) the result of modified boundary grid 

 

 

This representation is, however, neither efficient nor compact if we want to use it in an iteration  

to search for the coordinates of a specific region's boundary. To compensate this shortcoming, we also use  

a sparse boundary representation, denoted as 𝐵𝑆, as a look-up table to index pairs of neighbouring regions. 

This is a much more compact and efficient representation of the boundary information because any search or 

information retrieval operations that are carried out in this representation are carried out faster due to them 

being dependent only on the number of boundary pixels rather than the number of pixels. We can construct 

𝐵𝑆 from 𝐵′ by parsing the latter once, to gather all edge coordinates for each neighboring region pairs.  

Table 1 shows the sparse boundary representation of the Boundary Grid example we used earlier. Note that 

matrix subscripts are expressed as row and column order. 

 

 

Table 1. Sparse boundary representation 
Neighbors Edge matrix subscripts (𝑆) 

a,b (1,6) (2,5) (3,4) 

a,c (4,1) (4,3) 

b,c (4,5) (5,6) (6,7) 

 

 

3.2.  The contour evolution algorithm 

In this section, we will discuss the algorithm to evolve the region boundaries using the two 

boundary representations described previously. Let 𝑆 be a set containing the matrix subscript pairs of all  

the boundary points that we want to evolve using our chosen image feature. We construct 𝑆 directly by 

querying 𝐵𝑆. For each element in 𝑆, we find its location in 𝐵′, and based on the values of the coordinate we 

can ascertain the type of edge it is. A horizontal edge is evolved horizontally by evaluating the feature 

vectors in the horizontal direction. Likewise, vertical edges are evolved vertically. We need to decide  

the value of a parameter 𝑤, where 𝑤 ∈ ℕ and 𝑤 ≠ 0, which is the search width (in pixel) of the evolution. 

The value of 𝑤 affects the speed and accuracy of the evolution and typically we want to use a small number. 

Large 𝑤 value may result in a label that is very different from the original estimate. The evolution  

of the boundary contour will be based directly on 𝑆 and is done by altering the label contents of 𝐵′  
as described in Algorithm 1 shown in Figure 7. Our new contour is then obtained directly by parsing  

the evolved 𝐵′ while generating the new 𝐵𝑆. The algorithm is executed iteratively until the number of pixels 

in the Boundary Grid that change from one iteration to the next, averaged out over 𝑛 number of iterations, 

converges below a specified threshold 𝜏. 

 

3.3.  Subpixel boundary location 

To further improve the precision of our method, we upsample our input and label images at the end 

of each complete evolution. We can repeat this for 𝑘 number of times, where 𝑘 ∈ ℕ, to increase the boundary 

precision to the nearest 2−(𝑘+1) of a pixel as described in algorithm 2 shown in Figure 7.  

 

3.4.  Adaptive curve smoothing 

We design our method to allow the decoupling of the different components of the contour evolution 

speed. To this effect, we apply an adaptive curve smoothing function at the end of the above contour 

evolution process. The rationale for this is to allow us to adjust the tightness of the curve to the feature and 
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only concern about smoothing the results afterward. The curve smoothing is adaptive, in such a way that in 

areas where strong image features are present it applies a weaker smoothing function to preserve the edge 

than in areas where the image features are weak. We achieve this by means of variable width moving average 

method. Let 𝐴 = ⟨𝑝𝑛|𝑛 ∈ ℕ and 𝑛 < card(𝐴)⟩ where 𝑝𝑛 ∈ 
2
 be a sorted sequence of set 𝑆. We define  

the sort operation such that ‖𝑝𝑛 − 𝑝𝑛−1‖ for 1 ≤ 𝑛 < card(𝐴) is minimized. We then apply a moving 

average on 𝐴 at every point 𝑝 along its curvature with variable half-width 𝑤𝑝 ∈ ℕ such that: 
 

𝑝𝑖 =
∑ 𝑝𝑖+𝑗

𝑤𝑝

𝑗=−𝑤𝑝

2 × 𝑤𝑝 + 1
 (8) 

 

for ∀𝑝 that meets the 𝑤𝑝 < 𝑝 < card(𝐴) − 𝑤𝑝 requirement. The value of 𝑤𝑝 is set between 𝑤min and 𝑤max 

and tied to the image feature at the location of the boundary points. In our experiment, we use the second 

derivative of the image function 𝐼′′ as the image feature and set 𝑤𝑝 to 𝑤min when the 𝐼′′ is at its lowest value, to 

𝑤max when the 𝐼′′ is at its highest value and linearly interpolated and rounded to the nearest integer in between. 

 

 

 
 

Figure 7. (a) Algorithm 1 to evolve the boundaries stored in a Boundary Grid and a Sparse Boundary 

Representation and (b) Algorithm 2 that iteratively up-samples the input and label images and makes calls to 

Algorithm 1 to achieve sub-pixel boundary evolution. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

We tested our method on a dataset of lumbar spine MRI images that we have collected [11] and their 

associated label images [12]. The dataset contains axial MRI scans of the last three intervertebral discs of  

515 patients. We present in this section, one–in our view the best–example case because it contains all of  

the problems to solve as described in the last part of section 2. This example case is described and illustrated 

in Figure 8. The figure shows the color-coded boundaries of a manually created label image. The figure 

shows a number of problems with the boundaries. Areas labelled (a)-(d) are examples of gaps between 

regions that were meant to be neighbours. Area labelled (e) illustrates inaccurate boundaries that are a few 

pixels away from the true edge. And lastly, we note that these boundaries in general have high curvature 

which can be seen from its jaggedness such as those labelled (f). 

The parameters that we use are as follows: image features 𝑓 = ∇(𝐺𝜎 ∗ 𝐼), the search width 𝑤 = 2, the 

number of upsampling levels 𝑘 = 2, the iteration averaging window 𝑛 = 10, the standard deviation threshold 
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𝜏 = 2, the min and max smoothing window half-widths 𝑤min = 5 and 𝑤max = 20, respectively. We applied our 

method to only evolve boundaries that we have prior knowledge to be gradient dependent while also 

improving the smoothness of the others. For comparison, we also apply the GAC algorithm [21]  

to the label image, sequentially for all regions except OT. We experimented with several combinations of 𝛼, 

𝛽 and 𝛾 values to produce an acceptable compromise between accuracy and smoothness, and we decided  

to use 𝛼 = 1, 𝛽 = 160 and 𝛾 = 500 to be the best. We also apply a morphological closing on the input label 

image prior to applying each technique to remove any small holes and gaps in the image.  

 

 

 
 

Figure 8. Color-coded boundaries of a manually created label image illustrating (a-d) gaps between 

supposedly neighbouring regions, (e) inaccurate boundary and (f) high curvature 

 

 

On average, the execution speed of our method compared to GAC at up sampling levels 𝑘 = 0, 1  

and 2 are 10.2, 8.6, and 5.2 times faster, respectively. We observed that the main reason why our method  

is significantly faster is that it carries out a shorter number of iteration before it converges. As can be seen in 

Figure 9, our method solves the bulk of the pixel changes in the first iteration resulting in a much quicker 

convergence than GAC. 

 

 

 
 

Figure 9. A typical number of pixel changes between successive iterations,  

(a) proposed, (b) geodesic active contours 

 

 

The contour evolution results of the two methods are shown in Figure 10. There are two notable 

improvements of our method compared to GAC. Our method primarily produces boundaries that are more 

tightly aligned with the true edge-marked as (e) in Figure 8 while at the same time produces a generally 

smoother contour than the latter. Note also the fact that GAC worsens the boundary between IVD  

and TS since this type of boundary is not characterized by strong intensity differences. 
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(a) 
 

(b) 
  

Figure 10. (a) The contour evolution results using our method, (b) The contour evolution results using GAC 

 

 

To quantitatively measure the method’s accuracy, the boundary-improved manually-labeled images 

were used to train a SegNet image segmentation model [5] which is then used to automatically label lumbar 

spine MRI images. The method was then subsequently applied to the segmented images to further improve 

their boundary. The method’s performance in improving region boundaries can be quantitatively measured 

by BF-score semantic contour-based metric [25] of the boundary-improved automatically segmented label 

images with respect to its boundary-improved manually-labeled images. We used the with distance threshold 

values of 1, 2, and 3 pixels for this purpose. The results are shown in Table 2. For comparison, the same 

metric is calculated when GAC was used instead and when no modification was applied. The result clearly 

shows that our method is better at improving the boundary accuracy of the label images than GAC and when 

no modification was applied. 

 

 

Table 2. BF-Score of the automatically segmented label images 
Method 𝑑𝑇 = 1 𝑑𝑇 = 2 𝑑𝑇 = 3 

Unmodified 0.74 0.89 0.92 

Proposed 0.84 0.92 0.95 

GAC 0.63 0.80 0.89 

 

 

It is worth noting that the implementation of our method can be parallelized hence its effectiveness 

can be further optimized by utilizing GPU computation. Using the criteria set in [26], our method is suited for 

GPU computation due to its high data parallelism and low memory usage and branch divergence. The only 

drawback in this respect is the iterative nature of the process which requires synchronization at the end of 

each iteration. 

 

 

5. CONCLUSION 

We have proposed a new method of contour evolution that is suited to improving manually 

segmented medical images. Our method solves two main problems in Active Contour Models namely 1) their 

inability to use different image features at different segment of the contour and 2) the interdependency  

of the parameters of the contour evolution speed which makes finding good and suitable combination 

parameter values a difficult task. We tested our method on lumbar spine MRI images and our experimental 

results show that it can, not only, improve the accuracy of the boundary delineation of the manually 

segmented images, by 10 percentage points as measured using the BF-Score semantic contour-based metric, 

but also produce visually accurate and yet smoother contour than the traditional GAC method. Ours finding 

should apply generally even though we only focus on the segmentation of lumbar spine MRI images as  

a case study. 
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