3,365 research outputs found

    Elastic suspension of a wind tunnel test section

    Get PDF
    Experimental verification of the theory describing arbitrary motions of an airfoil is reported. The experimental apparatus is described. A mechanism was designed to provide two separate degrees of freedom without friction or backlash to mask the small but important aerodynamic effects of interest

    A comparison of resting state functional magnetic resonance imaging to invasive electrocortical stimulation for sensorimotor mapping in pediatric patients

    Get PDF
    Localizing neurologic function within the brain remains a significant challenge in clinical neurosurgery. Invasive mapping with direct electrocortical stimulation currently is the clinical gold standard but is impractical in young or cognitively delayed patients who are unable to reliably perform tasks. Resting state functional magnetic resonance imaging non-invasively identifies resting state networks without the need for task performance, hence, is well suited to pediatric patients. We compared sensorimotor network localization by resting state fMRI to cortical stimulation sensory and motor mapping in 16 pediatric patients aged 3.1 to 18.6 years. All had medically refractory epilepsy that required invasive electrographic monitoring and stimulation mapping. The resting state fMRI data were analyzed using a previously trained machine learning classifier that has previously been evaluated in adults. We report comparable functional localization by resting state fMRI compared to stimulation mapping. These results provide strong evidence for the utility of resting state functional imaging in the localization of sensorimotor cortex across a wide range of pediatric patients

    On the role of the corpus callosum in interhemispheric functional connectivity in humans

    Get PDF
    Resting state functional connectivity is defined in terms of temporal correlations between physiologic signals, most commonly studied using functional magnetic resonance imaging. Major features of functional connectivity correspond to structural (axonal) connectivity. However, this relation is not one-to-one. Interhemispheric functional connectivity in relation to the corpus callosum presents a case in point. Specifically, several reports have documented nearly intact interhemispheric functional connectivity in individuals in whom the corpus callosum (the major commissure between the hemispheres) never develops. To investigate this question, we assessed functional connectivity before and after surgical section of the corpus callosum in 22 patients with medically refractory epilepsy. Section of the corpus callosum markedly reduced interhemispheric functional connectivity. This effect was more profound in multimodal associative areas in the frontal and parietal lobe than primary regions of sensorimotor and visual function. Moreover, no evidence of recovery was observed in a limited sample in which multiyear, longitudinal follow-up was obtained. Comparison of partial vs. complete callosotomy revealed several effects implying the existence of polysynaptic functional connectivity between remote brain regions. Thus, our results demonstrate that callosal as well as extracallosal anatomical connections play a role in the maintenance of interhemispheric functional connectivity

    Dissolution and bandgap paradigms for predicting the toxicity of metal oxide nanoparticles in the marine environment: an in vivo study with oyster embryos

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this recordDissolution and bandgap paradigms have been proposed for predicting the ability of metal oxide nanoparticles (NPs) to induce oxidative stress in different in vitro and in vivo models. Here, we addressed the effectiveness of these paradigms in vivo and under conditions typical of the marine environment, a final sink for many NPs released through aquatic systems. We used ZnO and MnO2 NPs as models for dissolution and bandgap paradigms, respectively, and CeO2 NPs to assess reactive oxygen radical (ROS) production via Fenton-like reactions in vivo. Oyster embryos were exposed to 0.5-500 μM of each test NP over 24 h and oxidative stress was determined as a primary toxicity pathway across successive levels of biological complexity, with arrested development as the main pathological outcome. NPs were actively ingested by oyster larvae and entered cells. Dissolution was a viable paradigm for predicting the toxicity of NPs in the marine environment, whereas the surface reactivity based paradigms (i.e. bandgap and ROS generation via Fenton-like reaction) were not supported under seawater conditions. Bio-imaging identified potential cellular storage-disposal sites of solid particles that could ameliorate the toxicological behavior of non-dissolving NPs, whilst abiotic screening of surface reactivity suggested that the adsorption-complexation of surface active sites by seawater ions could provide a valuable hypothesis to explain the quenching of the intrinsic oxidation potential of MnO2 NPs in seawater.This project was funded by the European Union Horizon 2020 research and innovation program under Marie Sklodowska-Curie grant agreement No 655134 and NERC FENAC access grant No PR120021. TG acknowledges support from NERC grant NE/N006178/1

    Delivering reform in English healthcare: an ideational perspective

    Get PDF
    A variety of perspectives has been put forward to understand reform across healthcare systems. Recently, some have called for these perspectives to give greater recognition to the role of ideational processes. The purpose of this article is to present an ideational approach to understanding the delivery of healthcare reform. It draws on a case of English healthcare reform – the Next Stage Review led by Lord Darzi – to show how the delivery of its reform proposals was associated with four ideational frames. These frames built on the idea of “progress” in responding to existing problems; the idea of “prevailing policy” in forming part of a bricolage of ideas within institutional contexts; the idea of “prescription” as top-down structural change at odds with local contexts; and the idea of “professional disputes” in challenging the notion of clinical engagement across professional groups. The article discusses the implications of these ideas in furthering our understanding of policy change, conflict and continuity across healthcare settings

    Homotopic functional connectivity disruptions in glioma patients are associated with tumor malignancy and overall survival

    Get PDF
    BACKGROUND: Gliomas exhibit widespread bilateral functional connectivity (FC) alterations that may be associated with tumor grade. Limited studies have examined the connection-level mechanisms responsible for these effects. Given the typically strong FC observed between mirroring/homotopic brain regions in healthy subjects, we hypothesized that homotopic connectivity (HC) is altered in low-grade and high-grade glioma patients and the extent of disruption is associated with tumor grade and predictive of overall survival (OS) in a cohort of METHODS: We used a mirrored FC-derived cortical parcellation to extract blood-oxygen-level-dependent (BOLD) signals and to quantify FC differences between homotopic pairs in normal-appearing brain in a retrospective cohort of glioma patients and healthy controls. RESULTS: Fifty-nine glioma patients (WHO grade 2, CONCLUSIONS: These findings demonstrate an association between tumor grade and HC alterations that may underlie global FC changes and provide prognostic information

    Clustering of resting state networks

    Get PDF
    BACKGROUND: The goal of the study was to demonstrate a hierarchical structure of resting state activity in the healthy brain using a data-driven clustering algorithm. METHODOLOGY/PRINCIPAL FINDINGS: The fuzzy-c-means clustering algorithm was applied to resting state fMRI data in cortical and subcortical gray matter from two groups acquired separately, one of 17 healthy individuals and the second of 21 healthy individuals. Different numbers of clusters and different starting conditions were used. A cluster dispersion measure determined the optimal numbers of clusters. An inner product metric provided a measure of similarity between different clusters. The two cluster result found the task-negative and task-positive systems. The cluster dispersion measure was minimized with seven and eleven clusters. Each of the clusters in the seven and eleven cluster result was associated with either the task-negative or task-positive system. Applying the algorithm to find seven clusters recovered previously described resting state networks, including the default mode network, frontoparietal control network, ventral and dorsal attention networks, somatomotor, visual, and language networks. The language and ventral attention networks had significant subcortical involvement. This parcellation was consistently found in a large majority of algorithm runs under different conditions and was robust to different methods of initialization. CONCLUSIONS/SIGNIFICANCE: The clustering of resting state activity using different optimal numbers of clusters identified resting state networks comparable to previously obtained results. This work reinforces the observation that resting state networks are hierarchically organized

    Host specificity and species colouration mediate the regional decline of nocturnal moths in central European forests

    Get PDF
    The high diversity of insects has limited the volume of long-term community data with a high taxonomic resolution and considerable geographic replications, especially in forests. Therefore, trends and causes of changes are poorly understood. Here we analyse trends in species richness, abundance and biomass of nocturnal macro moths in three quantitative data sets collected over four decades in forests in southern Germany. Two local data sets, one from coppiced oak forests and one from high oak forests included 125K and 48K specimens from 559 and 532 species, respectively. A third regional data set, representing all forest types in the temperate zone of central Europe comprised 735K specimens from 848 species. Generalized additive mixed models revealed temporal declines in species richness (−38%), abundance (−53%) and biomass (−57%) at the regional scale. These were more pronounced in plant host specialists and in dark coloured species. In contrast, the local coppiced oak forests showed an increase, in species richness (+62%), while the high oak forests showed no clear trends. Left and right censoring as well as cross validation confirmed the robustness of the analyses, which led to four conclusions. First, the decline in insects appears in hyper diverse insect groups in forests and affects species richness, abundance and biomass. Second, the pronounced decline in host specialists suggests habitat loss as an important driver of the observed decline. Third, the more severe decline in dark species might be an indication of global warming as a potential driver. Fourth, the trends in coppiced oak forests indicate that maintaining complex and diverse forest ecosystems through active management may be a promising conservation strategy in order to counteract negative trends in biodiversity, alongside rewilding approaches
    corecore